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Abstract: Generation of entangled photons in nonlinear media constitutes
a basic building block of modern photonic quantum technology. Current
optical materials are severely limited in their ability to produce three or
more entangled photons in a single event due to weak nonlinearities and
challenges achieving phase-matching. We use integrated nanophotonics
to enhance nonlinear interactions and develop protocols to design
multimode waveguides that enable sustained phase-matching for third-
order spontaneous parametric down-conversion (TOSPDC). We predict
a generation efficiency of 0.13 triplets/s/mW of pump power in TiO2-
based integrated waveguides, an order of magnitude higher than previous
theoretical and experimental demonstrations. We experimentally verify our
device design methods in TiO2 waveguides using third-harmonic generation
(THG), the reverse process of TOSPDC that is subject to the same
phase-matching constraints. We finally discuss the effect of finite detector
bandwidth and photon losses on the energy-time coherence properties of
the expected TOSPDC source.
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40. M. Soljačić and J. D. Joannopoulos, “Enhancement of nonlinear effects using photonic crystals,” Nat. Mater. 3,
211–219 (2004).

41. Y. Watanabe, M. Ohnishi, and T. Tsuchiya, “Measurement of nonlinear absorption and refraction in titanium
dioxide single crystal by using a phase distortion method,” Appl. Phys. Lett. 66, 3431 (1995).

42. S. K. Das, C. Schwanke, A. Pfuch, W. Seeber, M. Bock, G. Steinmeyer, T. Elsaesser, and R. Grunwald, “Highly
efficient THG in TiO2 nanolayers for third-order pulse characterization,” Opt. Express 19, 16985–16995 (2011).

1. Introduction

Optical quantum technologies [1] often rely on nonlinear optical crystals pumped with coherent
radiation to generate light with non-classical properties, including entanglement. Entangled
photons have applications in many fields, such as quantum cryptography [2], quantum
metrology [3], quantum imaging [4, 5], quantum spectroscopy [6], and quantum information
processing [7]. Many experimental efforts aim towards the generation, manipulation, and
detection of entangled photons using nanoscale optical devices that provide a compact and
scalable platform to perform quantum optics experiments on a single chip [1].
Entangled states of light containing three or more photons are currently built

interferometrically starting from entangled photon pairs or single photons [2], with entangled
pairs typically generated via spontaneous parametric down-conversion (SPDC) [8], biexciton
decay [9], and spontaneous four-wave mixing [10]. Tripartite entanglement can be used
for quantum secret sharing [11] and measurement-based quantum computing [12]. The
production of entangled photon triplets via cascaded SPDC has been demonstrated [13–15],
with generation efficiencies on the order of 10−2 triplets/s/mW pump power [14]. Third-order
spontaneous parametric down conversion (TOSPDC), when one pump photon splits into three
signal photons, can also generate entangled photon triplets. The temporal coherence properties
of TOSPDC photon triplets are different from cascaded SPDC sources [16].
TOSPDC represents an experimental challenge [17] due to low third-order nonlinearities

(χ(3)) in typical optical materials. Moreover, phase-matching becomes increasingly difficult
to satisfy for widely-spaced wavelengths. Recently, nanoscale optical devices have emerged
as a promising route to enhance nonlinear-optical processes, mostly due to high field intensity
from sub-wavelength confinement of the electromagnetic field [1]. In addition, sustained phase-
matching for widely-spaced wavelengths can be achieved using strong dispersion in non-
fundamental waveguide modes. These remarkable improvements over bulk materials indicate
that integrated nanophotonic waveguides can enable efficient TOSPDC.
In this work, we propose a protocol to optimize efficient generation of entangled photon

triplets via TOSPDC in nanophotonic waveguides. We discuss in detail how to optimize key
design parameters, such as phase-matching and mode overlap between visible pump and
infrared signal modes, while also considering the impacts of photon losses. Our proposed design
protocol can be applied to many waveguide materials and geometries. We validate our design
protocol experimentally by demonstrating THG, the reverse of TOSPDC, in nanoscale TiO2
waveguides. Titanium dioxide (TiO2) is a promising material platform for efficient TOSPDC
[18–22]. Pumping with a visible laser at λp = 420–450 nm or 510–520 nm generates photons in
the O and C telecommunication bands, allowing integration with silicon photonics, existing
telecommunications infrastructure, and efficient single photon detection [23]. We finally
calculate the temporal coherence properties of TOSPDC sources in coincidence measurements,
taking into account finite detector bandwidths and propagation losses.
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2. Device design

TOSPDC in bulk nonlinear optical materials has previously been ruled out as a viable source of
entangled photons due to the inherent difficulty of achieving phase-matching across nearly two
octaves, low χ(3) nonlinearities, and weak light confinement over long interaction lengths [17].
TOSPDC in nano-scale silica fibers was proposed theoretically by Corona et al. [24]. The
predicted photon triplet generation efficiency in 10-cm long silica fibers, ignoring the impact
of photon losses, is 1.9× 10−2 triplets/s/mW of pump power [24, 25], which is comparable to
current experimental demonstrations [13,14]. However, silica fibers cannot be easily integrated
to produce on-chip photon triplet sources due to incompatibility with CMOS fabrication
techniques and low index contrast with commonly-used cladding materials.
We propose to use an alternative material, TiO2, for its high refractive index, high χ(3)

nonlinearity, and CMOS compatibility [26, 27]. These characteristics make TiO2 an excellent
platform for an on-chip, integrated photon triplet source.
Optimizing the efficiency of photon triplet generation in nanophotonic waveguides requires

four major considerations: phase-matching, mode overlap, interaction length, and power
coupled into the phase-matched pump mode. In the rest of this section, we define criteria to
optimize these factors and achieve the largest triplet generation efficiency. We consider photon
losses due to their impact on conversion efficiency, optimal device length, and signal spectrum.
Using optimized parameters for a TiO2 nanoscale waveguide, we predict its performance for
TOSPDC under realistic conditions, including photon losses.

2.1. Higher-order mode phase-matching
According to Fermi’s golden rule [17], the transition rate for the conversion of a pump
photon of frequency ωp into three signal photons at frequencies denoted as ωs, ωr and ωi
is strongly suppressed for any combination of frequencies that does not satisfy the energy
conservation constraint ωp = ωr+ωs+ωi. The probability of generating signal photons that
satisfy energy conservation is maximal for those combinations that also satisfy the phase-
matching or momentum-conservation rule, kp = kr+ ks+ ki, where km is the wavevector of
each photon in mode m = {p,s, r, i}. In this work, we consider nanoscale ridge waveguides
(Fig. 1(b)), for which the propagation direction of guided modes is along the waveguide.
In this case, momentum conservation reduces to a scalar identity for the magnitude of the
wavenumbers of propagating modes k = 2πneff/λ , where neff is the effective refractive index
of the signal mode at wavelength λ .
The wavelength dependence of the effective index neff(λ ) in guided modes is determined

by the waveguide geometry, dispersion properties of the core and cladding materials, and
mode order. In the optical regime, the refractive index for a transparent material is typically
larger at the shortest wavelengths, monotonically decreasing with increasing wavelength. For
example, in TiO2 there is an index mismatch of 0.17 between a 532-nm pump and 1596-
nm signal wavelength, which leads to a 1.6-µm coherence length. Additionally, for a given
wavelength λ , higher-order modes have a lower effective index than the fundamental mode. In
Fig. 1(a), we demonstrate these two points by plotting the effective index for twomodes (i.e., the
TM00 fundamental [signal] and TM02 higher-order [pump] modes) of a TiO2 waveguide with a
550-nm core width and a 360-nm thickness, with an SiO2 cladding. By employing a higher-
order mode at the shorter wavelength, we can match effective indices for highly disparate
wavelengths [22, 28].
We define the perfect phase matching (PPM) point as the pump wavelength λ0p for which

nseff(3λ 0p ) = npeff(λ 0p ), where nseff is the effective index of the signal mode of interest and n
p
eff is

the pump index. At the PPM point, the phase-matching condition reads k0p = 3k0s , since all three
signal photon frequencies are degenerate. For the case of a monochromatic pump at the PPM-
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Fig. 1. (a) Schematic of higher-order mode phase matching using calculated dispersion
data for a fully-etched 550× 360 nm TiO2 waveguide with SiO2 cladding. Shifting the
pump mode from λp to 3λp gives a point of intersection where the effective indices of
the TM00 signal and TM02 pump modes are the same. Phase matching is achieved at λp
= 532 nm. Guided modes reach a cutoff wavelength when their effective index is equal
to the cladding SiO2 index (gray region). (b) Schematic of the waveguide cross section
and tunable parameters. (c) 3D schematic of an integrated device with input and output
coupling.

condition, the signal photons can be generated away from ωp/3, so long as energy conservation
is maintained. A finite phase-mismatch will result from group velocity dispersion (GVD) in
the signal mode (Ds = ∂ 2ks/∂ω2

s |ωs=ω0s ), limiting the bandwidth. The signal bandwidth at
PPM is thus given by ∆PPM, corresponding to the FWHM of the function sinc2(∆kL/2), which
determines the triplet generation rate as a function of finite phase mismatch (see Section 2.3):

∆PPM =

√
4π
L|Ds|

(1)

where L is the nonlinear interaction length. The relative intensities of the signal photons that
are emitted for the PPM case are visualized in Fig. 2(a), where the idler (ωr, ωi) vs. signal-
frequency (ωs) intensity-plot shows a single peak centered at the degenerate signal frequency.
The black curve in Fig. 2(d) shows the corresponding intensity of all three signal photons as a
function of frequency.
In TOSPDC, the pump wavelength can be blue-detuned away from the PPM point while still

satisfying energy and momentum conservation efficiently for normal signal-mode dispersion.
This produces non-degenerate photon triplets in energy. Energy and momentum conservation
cannot simultaneously be satisfied for a red-detuned pump with normal dispersion in the signal
mode. Satisfying energy and momentum conservation rules for 1D propagation results in an
under-constrained system of equations with two free parameters. One is fixed by choosing the
pump frequency ωp = 2πc/λp. We can choose the remaining degree of freedom to be one of
the signal frequencies ωm, with m= {s, r, i}.
We refer to the range of signal frequencies over which energy and momentum conservation
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Fig. 2. We visualize the joint spectral intensity as an intensity plot of frequency versus
frequency for several values of the pump detuning ∆λp from the PPM wavelength. Panels
(a), (b) and (c) correspond to ∆p = 0, ∆p = −2 nm and ∆p = −0.5 nm, respectively. We
assume a waveguide length L = 2 mm and use dispersion values for the phase matching
point shown in Fig. 1(a). Fixing one of the three signal wavelengths (ωs) on the horizontal
axis, the two other signal wavelengths (ωr andωi) are given by the two values on the vertical
axis that intersect the ellipse. Phase matching is achieved along the perimeter of the ellipse
and the thickness is determined by the pump and signal interaction length, based on Eq. (1).
By collapsing the plots in (a), (b), and (c) onto the horizontal axis, we generate the spectra
shown in (d). All three spectra are normalized by the total conversion efficiency. Panel (e)
shows signal spectrum bandwidth as a function of pump detuning ∆ωp. The dashed black
curve gives the bandwidth defined by Eq. (2). Red and blue curves are numerically obtained
signal bandwidths for waveguide lengths L= 2 mm and L=20 mm, respectively. Panel ( f )
zooms near the PPM point.

is fulfilled for TOSPDC as the signal bandwidth δs (derived in Appendix A), given by:

δs = 2
(
2
3

)1/2[2
(
v−1p − vs−1

)

Ds
∆p+

(
Dp
Ds

)
∆2p

]1/2
, (2)

where ∆p =ωp−ω0
p and ∆m =ωm−ω0

p/3, withm= {s, r, i}, are the pump and signal detunings
from the PPM point. ω0

p is the pump frequency that gives PPM. vp and vs are the group
velocities of the pump and signal modes at the PPM point, and Dp and Ds are their group
velocity dispersion.
For a long interaction length L and a monochromatic pump with detuning ∆p, the signal

frequencies that satisfy energy and momentum conservation simultaneously can be represented
in a (ωs,ωr)-plane by the ellipse (derived in Appendix A):

∆2s +∆2r −∆r∆s−∆p(∆r+∆s) = Ap, (3)

where Ap= (3/16)δ 2s −∆2p. In Figs. 2(b) and 2(c), we plot the relative intensity of emitted signal
photons in a frequency-frequency plane for cases where the pump is slightly detuned from the
PPM point. The highest intensities occur at frequencies satisfying the ellipse equation above.
The photon triplet wavefunction has a non-vanishing amplitude for signal frequencies outside

#257454 Received 14 Jan 2016; accepted 9 Apr 2016; published 27 Apr 2016 
© 2016 OSA 2 May 2016 | Vol. 24, No. 9 | DOI:10.1364/OE.24.009932 | OPTICS EXPRESS 9937 



the ellipse in Eq. (3); however these frequencies are strongly suppressed because of poor phase
matching (Figs. 2(b) and 2(c)).
The ellipse width δs grows with a scaling (∆p)1/2 for pump detuning 0 < ∆p < ∆cp =

2(vs− vp)/(vpvsDp) and with a scaling (∆p)1 for greater pump detuning. Maximizing signal
Ds and minimizing vs − vp and Dp minimizes signal bandwidth for finite phase mismatch.
This provides a method to minimize signal bandwidth in the case that fabrication variations
introduce finite phase mismatch. For fixed pump detuning ∆p, the signal bandwidth δs in
Eq. (2) corresponds to the distance between the highest and lowest points in the ellipse.
The corresponding spectrum consists of a two-peak structure with intensity maxima ocurring
roughly at frequencies ω0

p/3±δs/2 (Fig. 2(d)). The spectra in Fig. 2 are obtained numerically
by computing the triplet generation rate from Eq. (6) in Section 2.3.
In Fig. 2(e), we plot the signal bandwidth δs as a function of pump detuning ∆p for the

TiO2 waveguide parameters from Fig. 1. The bandwidth is obtained from numerical spectra
(as in Figs. 2a, b, and c) computed at 1/10-th the peak maximum, for the interaction lengths
L = 2 mm and L = 20 mm. As the pump-signal interaction length increases, the spectral
amplitude of the three-photon state (Section 2.3) approaches a delta function in the phase
mismatch ∆k = kp− kr− ks− ki. In this limit, the bandwidth δs in Eq. (2) accurately matches
the numerical bandwidth. The discrepancy between analytical and numerically calculated
bandwidth is greatest at ∆p = 0, with a minimum bandwidth δs = 54× 1012 rad/s for L = 2
mm and δs = 14×1012 rad/s for L= 20 mm. As we discuss in Section 2.3, photon loss due to
scattering and absorption reduces the effective interaction length, thus broadening the signal.

2.2. Effective nonlinearity and modal overlap
Once phase matching and energy conservation are satisfied for the interacting pump and signal
modes, the efficiency of TOSPDC is determined by the effective nonlinearity [24]:

γ =
3χ(3)ωp
4ε0c2n2

η , (4)

where n is the material index and χ(3) is the effective third-order susceptibility at the pump
frequency. We can define η as the sum of mode overlap components ηi jkl ≡ [Ai jkleff ]

−1 =
∫∫
Ei∗p E

j
sEksElsdxdy between pump and signal electric field components [24] corresponding

to all non-zero susceptibility tensor elements χ(3)
i jkl . The electric fields in this calculation are

normalized. The non-zero tensor elements are determined by the material crystal structure and
orientation.
Our TiO2 is deposited on a thick thermal oxide and is thus polycrystalline with randomly

oriented grains of diameter smaller than 50 nm. The lack of long-range order and the small grain
size allows us to treat the material as effectively isotropic. Using the methods above we typically
find an effective interaction area Aeff on the order of 10−10 m2 for our TiO2 waveguides. The
details on how to obtain the nonlinear overlaps ηi jkl are given in Appendix B.
We calculate the effective nonlinearity γ in Eq. (4) for a pump and signal mode pair using

mode profiles calculated with a commercial finite-difference eigenmode solver [29]. Because
a significant part of the field in nanoscale waveguides is evanescent, we must consider the
components of the mode profile that are in the waveguide core and cladding independently and
utilize the corresponding nonlinear tensors.
Direct measurements of χ(3) are difficult because of multi-photon absorption and other

competing nonlinear interactions, especially at photon wavelengths below the half band gap;
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therefore, we use the nonlinear index [30]

n2 =
3χ(3)

4n20ε0c
(5)

to parameterize the magnitude of the third-order nonlinearity. We use the value n2 = 4.65×
10−19 m2/W for the TiO2 nonlinearity at 532 nm. This value is obtained from the bandgap
scaling of n2(λ ) [31] (see Appendix B for details).

2.3. Triplet generation rate in lossy waveguides
The rate of direct generation of photon triplets R3 from TOSPDC in the absence of photon losses
has been calculated in previous work [16, 24]. Findings in Refs. [16, 24] can be qualitatively
summarized by the expression R3 ≈ ζ̃ Np(0)L, where Np(0) is the number of pump photons
entering the waveguide and ζ̃ ∝ γ2 is the conversion efficiency per unit length, and L the
waveguide length.
In the presence of photon losses, the triplet generation rate no longer increases linearly

with L. We account for scattering losses by introducing pump and signal intensity attenuation
coefficients αp and αs, respectively. We emphasize that an optimal length Lopt must exist such
that the waveguide is long enough to generate a large number of triplets, but short enough so that
a large fraction of complete triplets reaches the end when losses are taken into consideration.
Extending the analysis in Ref. [24], we can express the triplet generation rate R3 in the presence
of losses for a continuous wave (cw) pump as (derivation in Appendix C)

R3 =
22 32 h̄c3n3p

π2[ω0
p ]
2 γ2L2P

(
ω0

n20(ω)
g(ω0)

)3
e−(αp+3αs)L/2

∫∫ ∞

−∞
dνr dνs|Φ(νr,νs)|2 , (6)

where the spectral amplitude Φ(νr,νs) is defined in Appendix C in terms of the frequency-
dependent phase mismatch ∆k(νr,νs) and a loss mismatch parameter ∆α = (αp− 3αs). P is
the pump power and ω0 = ω0

p/3. The integration variables νr and νs are signal detunings from
ω0
p/3.
We can compare the triplet generation rate from Eq. (6), which takes into account the

dispersion properties of the signal mode around the phase matching point, with a simplified
expression that ignores dispersion (derivation in Appendix C)

N3 ≡
∫ L

0
z
dN3(z)
dz

= ζ̃
Np0

αp−3αs
(
e−3αs L− e−αp L) , (7)

where ζ̃ quantifies the conversion efficiency. The device length that optimizes N3 is thus given
by Lopt =

[
1/(αp−3αs)

]
ln
(
αp/3αs

)
, for ∆α = (αp−3αs) ̸= 0.

In Fig. 3(a), we plot the normalized signal intensity in the waveguide as a function of the
waveguide length L, for different amounts of photon loss in TiO2 waveguides. The simplified
model that ignores dispersion (Eq. (7)) is an excellent approximation for the results obtained by
integrating the squared spectral amplitude |Φ(νr,νs)|2 (Eq. (6)) near points of PPM. In Fig. 3(b),
we plot the optimal device length Lopt, as a function of the pump and signal loss parameters αp
and αs. Highlighted is the parameter region for the waveguides considered in this work.

3. Device optimization

For efficient device operation, we maximize the triplet generation rate R3 in Eq. (6). Given an
optimal device length Lopt, we must thus minimize the phase mismatch ∆k for the desired
combination of pump and signal frequencies. This will produce narrow-bandwidth photon
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Fig. 3. (a) Signal intensity as a function of device length for pump and signal loss values,
respectively, of (i) 16 and 4 dB/cm, (ii) 16 and 12 dB/cm, (iii) 28 and 4 dB/cm, and (iv)
28 and 12 dB/cm, representing losses on the lower and upper extremes for TiO2 devices.
Circles show the full quantum prediction, including signal dispersion, from Eq. (6) and
lines show the prediction from Eq. (7). All curves are normalized by the maximum sig-
nal. (b) Ideal waveguide length plotted as a function of pump and signal losses. Current
polycrystalline anatase TiO2 waveguide losses give optimal device lengths Lopt = 1− 4
mm. White denotes Lopt > 8 mm.

triplets as shown in Fig. 2(a) and 2(d). We must also maximize the effective nonlinearity
γ by choosing a waveguide geometry that enhances the electric field overlap between pump
and signal modes within a material with a high χ(3) coefficient. We design TiO2 waveguides
with rectangular core geometry that achieve γ = 1100 W−1km−1 while maintaining single
mode operation at 1596 nm. In Section 3.1 we describe the optimization protocol used and
in Section 3.2 we verify the design method with a demonstration of THG.

3.1. Optimization protocol
We design our devices for λp = 532 nm because high-power pump lasers with narrow
bandwidth, high stability, and low cost are readily available at this wavelength. Our design
protocol can be extended to other wavelengths and material platforms depending on the desired
signal photon wavelength and available pump laser wavelength. Designing for a particular
pump wavelength requires precise control of the waveguide dimensions [22, 32, 33].
We illustrate in Fig. 1(b) the geometry of our TiO2 waveguides. The design parameters that

can be tuned include: the waveguide core material, bottom cladding or substrate material,
top cladding material, waveguide width, waveguide height, etch fraction, and the waveguide
sidewall angle (θ ). Due to the current state of the art in TiO2 waveguide fabrication, we focus
on fully etched, symmetric waveguide geometries with 90◦ sidewall angles.
We use a commercial finite-difference eigenmode solver [29] to complete our device design

and optimization. For a given device geometry, we calculate all propagating modes and their
dispersion properties at λp and 3λp, using measured materials properties. We then use calculated
mode dispersion properties to calculate the phase mismatch ∆k for all mode pairs consisting of
visible pump and IR signal. The mode profiles and the χ(3) nonlinearity of the core and cladding
materials are used to calculate the mode overlap and γ for all mode pairs (see Appendix B). This
process is repeated for all device geometries to minimize phase mismatch and maximize γ .
We complete a sweep for rectangular waveguides, varying the waveguide height in the range

200 – 400 nm and width in the range 400 – 600 nm. This range of dimensions is chosen to
ensure single mode operation at 3λp, meaning only one TE and one TM guiding mode are
supported by the waveguide. To quickly assess different waveguide geometries we introduce a
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Fig. 4. (top) The effective nonlinearity γ as a function of waveguide width and thickness
for the best phase-matching point. The highest γ = 1100 W−1km−1 is achieved in a
600× 300 nm waveguide for TE signal and a 600× 400 nm waveguide for TM sig-
nal. However, these dimensions do not achieve phase-matching. Lines mark regions with
high F which do achieve phase-matching. (bottom) Figure of merit F as a function of
waveguide dimensions. The best combination of phase matching and γ are achieved at
600×245 nm (γ = 908 W−1km−1) for TE signal and 550×360 nm (γ = 674 W−1km−1)
for TM signal.

figure of merit that describes the effective spectral density of signal photons

F =
γ2
δs
, (8)

where the minimum signal bandwidth min{δs} = ∆PPM is given by the PPM bandwidth in
Eq. (1) for degenerate TOSPDC. For each set of waveguide dimensions, we find the mode pair
(pump and signal) with the lowest phase mismatch that has non-zero effective nonlinearity. In
Fig. 4, we show the effective nonlinearity γ and figure of merit F for the best phase matched
mode pair with the fundamental IR signal mode, as a function of waveguide dimensions.
Regions that are colored in black for the TM signal γ do not support a TM signal mode.
Discontinuities in the plots of γ arise when the pump mode with the lowest phase mismatch
changes. The regions with highF in Fig. 4 are further restricted by the fact that the conversion
efficiency drops significantly for negative phase mismatch ∆k < 0 (black regions) because
normal dispersion in the signal modes at the signal frequencies makes simultaneous phase
matching and energy conservation impossible. Rapid broadening of the signal spectrum when
shifting waveguide dimensions away from regions that achieve PPM greatly reducesF .
We extract the optimal waveguide dimensions using the maximum values of F (Table 1).

Choosing a region where a high figure of merit is maintained for a larger range of waveguide
dimensions can reduce the negative impacts of fabrication tolerances on device performance in
experimental demonstrations. The same figure of merit can be used to optimize other waveguide
parameters and geometries.
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Table 1. Waveguide Parameters for Phase-matching Regions With High Figure of
MeritF . es is the Signal Mode Polarization and γ the Effective Nonlinearity.

es Width (nm) Thickness (nm) γ (W−1km−1) ∆PPM (µm) F (W−2m−2µm−1)
TE 400 – 600 268 – 245 291 – 908 0.046 – 0.051 1.81 – 16.2
TE 400 – 600 322 – 346 233 – 718 0.044 – 0.062 1.22 – 11.6
TM 400 – 600 351 – 364 522 – 671 0.044 – 0.048 6.19 – 14.0
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Fig. 5. Experimental demonstration of THG in an integrated waveguide with two phase-
matching points within the infrared pump bandwidth (black curve). The calculated THG
signal (dashed curve) shows agreement with the measured THG signal (solid green curve).
The inset shows a top-down image of scattered THG signal from the waveguide.

3.2. Experimental validation of the protocol
The reverse process of TOSPDC, THG, has been demonstrated in nanoscale polycrystalline
anatase TiO2 waveguides by Evans et al. [22]. Because the same energy conservation, phase
matching and mode overlap constraints govern both processes, we perform similar experimental
validation of our design methods by means of THG measurements.
The waveguide (780× 244 nm) is designed to have multiple phase-match points within the

TE-polarized pump bandwidth. Using the techniques from Sections 2.1 and 2.2, we calculate
phase match points with γ = 253 and 304 W−1km−1 at 513.3 and 523.0 nm, respectively. In
Fig. 5, we plot the expected relative intensities of THG based on the measured input pump
spectrum, calculated mode dispersion, and calculated γ of both mode pairs, showing close
agreement with experimental results. The experimental phase-match points are within 1.5 nm
of the calculated phase match points and the measured THG signal is broader by approximately
3 nm. This can be explained by variations in waveguide width of ±5 nm and thickness of
±2 nm along the length of the waveguide. These variations are within the measured fabrication
tolerances of waveguide width and roughness of the film used to fabricate the device. This
demonstration experimentally shows that the device design methods outlined in this paper can
be used to optimize devices for THG and, consequently, TOSPDC.
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3.3. Realistic device performance
Combining the results of the design sweeps presented in Figs. 3 and 4 with measured losses, we
estimate TOSPDC device performance. We have previously measured losses as low as 4 dB/cm
in polycrystalline anatase TiO2 waveguides in the telecommunications wavelengths [20, 26]
and estimate losses of 20–30 dB/cm at 532 nm. With this amount of losses, the optimal device
length is Lopt = 2.2− 2.8 mm. We estimate a photon triplet conversion efficiency of 0.1 –
0.13 triplets/s/mW of pump power and maximum generation rate of 130 – 160 triplets/s. This
rate takes into account an optimal end-fire coupling efficiency of 20.6% calculated for the 550
× 360 nm waveguide and higher-order pump mode described in Fig. 1 and an input pump
power of 1250 mW at 532 nm, corresponding to the measured damage threshold of our TiO2
devices. We note that the TE signal phase-matching point in a 600 × 245 nm waveguide
does have a higher γ , however, the photon triplet generation rate would be lower due to a
maximum end-fire coupling efficiency of only 10.5% into the higher-order pump mode. We
use a nonlinear index of n2 = 4.65× 10−19 m2/W. Film losses as low as 3 dB/cm in the
telecommunications wavelengths and 15 dB/cm in the visible wavelengths have been meas-
ured using prism coupling techniques [20]. By optimizing the fabrication, we can reduce losses
to the limit of the film losses, increasing the optimal device length to 3.7 mm and the maximum
triplet generation efficiency to 0.17 triplets/s/mW of pump power, over an order of magnitude
higher than previous theoretical and experimental results [13,14,24,25,34]. This highlights the
importance of reducing photon losses in waveguide-based devices.

4. Temporal coherence of TOSPDC sources

Second-order spontaneous parametric down conversion (SPDC) generates photon pairs that
possess quantum correlations in energy and time degrees of freedom. This energy-time
entanglement can be exploited in quantum communication protocols [35, 36]. Our TOSPDC
sources are expected to exhibit tripartite energy-time entanglement. However, the type of
encoding of quantum information that can be exploited for quantum communication protocols
with our source ultimately depends on the spectral and temporal coherence properties of the
down-converted signal [37]. In this section we therefore discuss the coherence properties of
TOSPDC sources for realistic detector and loss parameters.
The temporal coherence of a triplet source can be characterized in three-photon coincidence

detection experiments, which gives access to the third-order intensity correlation function [16]

G(3)(x1,x2,x3) = ⟨E(−)(x1)E(−)(x2)E(−)(x3)E(+)(x3)E(+)(x2)E(+)(x1)⟩, (9)

where Ê(+)(x j) is an operator describing the propagating electric field at the j-th detector, with
Ê(−) = [Ê(+)]†. The field at the detector is given by a wavepacket of the form Ê(+)(x j) =∫
dω f j(ω)â(ω)exp[ − iωx j], where â(ω) is a free-space bosonic operator. We assume a
Gaussian detector filter function f j(ω) = f0exp[−(ω −ω j)2/2σ2j ] [8]. f0 is a normalization
constant and ω j is the center frequency of the j-th spectral filter. For simplicity, we assume that
all filters have the same bandwidth σk = σ .
The G(3)(x1,x2,x3) correlation function is proportional to the probability of detecting a

photon at the space-time location x1 = t1 − r1/c, followed by a detection event at location
x2 = t2− r2/c and another one at x3 = t3− r3/c. In this notation, the j-th detector fires at time
t j at a distance r j from the TOSPDC output. This triple coincidence signal can be computed for
an output triplet state |Ψ3⟩ as

G(3)(x1,x2,x3) = |⟨0|E(+)(x3)E(+)(x2)E(+)(x1) |Ψ3⟩ |2. (10)

We are interested inG(3) for a triplet state generated by a narrow band cw pump near the perfect
phase matching point (PPM), defined in Section 2.1. For a pump photon with fixed frequency
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Fig. 6. Triple and two-photon coincidence signals for detectors placed at equal distances
from the TOSPDC output. Time delays τ12 = t1− t2 and τ32 = t3− t2 are given in units
of the characteristic timescale τ0 =

√
Ds L/2. Panels (a) and (b) are G(3) functions for

the detector filter bandwidths σ = 0.2ν0 and σ = 5ν0, respectively, with a loss mismatch
parameter ∆α L ≡ (αp−3αs)L = 0.1. Panels (d) and (e) correspond to the G(3) functions
for ∆α L= 1 and ∆α L= 10, respectively, with a detector bandwidth σ = 5ν0. Panel (c) is
the G(2) function for several values of σ with fixed ∆α L = 0.1 and ( f ) is the G(2) signal
for several values of ∆α L with fixed σ = 5ν0. Frequency is in units of ν0 = 1/τ0, L is
the waveguide length and Ds is the group velocity dispersion (GVD) of the signal guiding
mode. Plots are normalized to their maximum values.

ω0
p and wavenumber k0p, the triplet state |Ψ3⟩ is a continuous wavepacket describing three sig-
nal photons having frequencies (ωr,ωs,ωi) that satisfy energy and momentum conservation.
The triplet wavepacket is characterized by a joint spectral amplitude function Φ(ωr,ωs,ωi),
whose imaginary part depends on the amount of pump and signal losses. We refer the reader to
Appendix C for more details on this point. Signal photon frequencies that are detuned from the
PPM point, lead to a phase mismatch ∆k ̸= 0. For the triplet state |Ψ3⟩ described in Appendix
C, we numerically evaluate the G(3) function by expanding the frequency mismatch ∆k up to
second order in signal detunings from PPM.
In Fig. 6 we plot the computed G(3) signals with time delays in units of the timescale

τ0 =
√
DsL/2, where L is the waveguide length and Ds is the group velocity dispersion

(GVD) of the signal guiding mode. For a typical optimized TiO2 waveguide with L = 2 mm
and Ds = 5.36× 10−3 ps2/mm, the characteristic coherence time is τ0 = 73 fs. The signal
depends on the bandwidth σ of the detectors, given here in units of 1/τ0, as well as the loss
mismatch parameter ∆α ≡ (αp−3αs), which characterizes the frequency-time decoherence of
the triphoton state. For our 2 mm long waveguides, we have a small loss mismatch ∆α L≈ 0.08.
The mirror symmetry around τ12 = τ32 is due to the fact that all photons in a triplet have
the same GVD in mode-degenerate TOSPDC. The FHWM of the G(3) function along the cut
τ12 = −τ32 is roughly equals to τ0 for large detector bandwidths στ0 ≫ 1. Small bandwidths
στ0 ≪ 1 broaden the G(3) function such that highly correlated photons can be detected
within a wide range of time delays. This behaviour resembles the two-photon coincidence
signals for second-order SPDC sources [8]. Increasing the loss mismatch ∆α also broadens
the G(3) function, but in a qualitatively different way. Photon losses directly broaden the joint
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spectral amplitude Φ(ωr,ωs,ωi), which characterizes the wavepacket structure of the triplet
state |Ψ3⟩ in the frequency domain. This broadening is independent of the time-domain field
representation of |Ψ3⟩ at the detectors, the so-called triphoton wavepacket ψ(x1,x2,x3) ≡
⟨0|E(+)(x3)E(+)(x2)E(+)(x1) |Ψ3⟩, which involves shaping the triplet state |Ψ3⟩ by the detector
filters.
We finally consider a scenario where only two photons of the TOSPDC source are detected in

coincidence measurements. In other words, we discard the information about the third photon.
The resulting coincidence signal is proportional to the correlation function G(2)(x1,x2), the
second order analogue of G(3). For the TOSPDC triplet state |Ψ3⟩, this signal can be written as

G(2)(x1,x2) =
∫
dω3|⟨0|a(ω3)E(+)(x2)E(+)(x1) |Ψ3⟩ |2. (11)

We compute the G(2) correlation function as described in Appendix D for a source pumped
at the PPM point, for several values of the detector bandwidth σ and loss mismatch ∆α .
The results are shown in Fig. 6 (panels c and f). The two-photon correlation function has
qualitatively the same behaviour as the the G(3) function with σ and ∆α . Its width is also
on the order of 1/τ0 for στ0 ≫ 1. These results show that unlike an SPDC process, where
detection of one photon in a photon pair destroys any useful entanglement [8], frequency-time
entanglement in a TOSPDC source is robust against single photon losses [38].

5. Conclusion and outlook

We provide design principles for practical on-chip sources of photon triplets generated via
TOSPDC and discuss the non-unitary propagation of the photon triplet state in the presence of
pump and signal photon losses. Including the impact of losses is critical, especially when oper-
ating at visible wavelengths where surface roughness and fabrication imperfections are closer to
the size of a single wavelength and material absorption increases close to the band edge of the
waveguide core material. The design methods discussed in this work can be applied broadly
to various device geometries, loss conditions, and material platforms. This will facilitate
experimental demonstrations of spontaneously generated photon triplets and development of
a platform for commercially viable sources.
We use TiO2 to illustrate our design protocol. TiO2 is a promising material platform for

an integrated entangled photon triplet source due to its transparency across the visible and
telecommunication wavelengths as well as its high linear and nonlinear refractive indices. We
discuss the mean signal flux and prospects for detecting continuous-variable entanglement of
the photon triplet quantum state in the presence of photon loss. We calculate triplet generation
rates on the order of 10−1 triplets/s/mW of pump power, which exceeds the triplet generation
efficiencies obtained by cascading entangled photon pairs by an order of magnitude. Our work
thus sets the stage for the development of on-chip photon triplet sources for applications in
photonic quantum technologies.
Improvements to the proposed waveguide design and current fabrication techniques can

greatly enhance generation rates and accelerate experimental efforts. Generating photon triplets
within an integrated micro-ring resonator or resonant cavity can provide an additional constraint
on the spectrum of generated photons, enabling greater spectral control of the output signal via
the Purcell effect. Optimization of fabrication processes, including resist reflow techniques and
new etchless fabrication techniques [39], can reduce waveguide losses. Photonic crystals and
slot waveguides can be used to greatly enhance the effective nonlinearity of integrated photonic
devices [40].
Device performance can also benefit from improvements in material deposition. Film

optimization through epitaxial growth has the potential to dramatically reduce scattering losses
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due to grain boundaries, increasing the achievable optimal device length and conversion
efficiency. Rutile TiO2 is unexplored as a photonic device platform although other studies
have shown extraordinarily high nonlinearity at visible wavelengths in this material [41].
Alternatively, exploring other material platforms, for example silicon nitride or diamond, may
enable better devices despite their lower nonlinearity due to the trade-offs between propagation
losses, nonlinearity, and damage threshold.
Several experimental considerations need to be taken into account for successful measure-

ments of photon triplets. Although a pulsed pump would enable gated detection schemes
important for many applications, competing intensity-dependent nonlinear interactions, such
as multi-photon absorption and self- and cross-phase modulation, would limit the usable pulse
energy and attainable photon triplet generation rate. Secondly, spectral filtering at the device
output is necessary to reduce noise from residual pump photons. Lastly, as in all experimental
demonstrations, the rate of detected photon triplets is lower than the generated rate due to losses
at the device output, detector efficiency, and the detection scheme for measuring 3-photon
coincidences. These factors, coupled with the required fabrication precision for realizing an
efficient device, highlight the challenges associated with an experimental demonstration.
In summary, we have developed a design protocol to optimize the efficiency of TOSPDC

in nanoscale waveguides. We illustrate the scheme using TiO2 photonic chips, but the method
is general and can be applied to any material platform. Entangled photon triplets generated
this way can find applications in quantum tasks that can benefit from states with non-Gaussian
quantum statistics, serve as a starting point to build large entangled states of light for quantum
information purposes, or to develop novel spectroscopic tools.

A. Signal bandwidth for mode-degenerate TOSPDC

In this Appendix we derive Eq. (2) of the main manuscript, for the signal bandwidth ∆s. We
expand the signal and pump wavenumbers around the perfect phase-matching (PPM) point.
We allow the signal and pump frequencies to be detuned from this crossing by the quantities
∆m = ωm − ω0

p/3 with m = {s, r, i}. The phase-matching condition at the PPM point reads
k0p = 3k0s . Expanding the pump and signal wavenumbers around PPM with respect to the pump
and signal detunings, the condition (kp− ks− kr− ki) = 0 yields

(
∆2s +∆2r +∆2i

)
=
2
(
v−1p − vs−1

)

Ds
∆p+

(
Dp
Ds

)
∆2p ≡ r2p (12)

where vm ≡ dωm/dkp and Dm ≡ d2km/dω2
m are the mode group velocity and group velocity

dispersion (GVD) of them-th photon at the PPM point. Because the three signal photons belong
to the same guided mode, they have the same values of vs and Ds, defined at ω0

p/3.
We use energy conservation to simplify the linear terms with respect to the signal detunings.

Eq. (12) shows that for mode-degenerate and frequency non-degenerate TOSPDC, phase
matching can be satisfied by the signal detunings ∆m that lie on the surface of a sphere
with radius rp, subject to the linear constraint ∆p = ∆s+∆r+∆i, due to energy conservation.
We define dimensionless signal detunings xm = ∆m/∆p, for m = {r,s}, and the parameter
ap = r2p/(2∆2p)− 1 (in Eq. 3 we use Ap = ap∆2p). The points satisfying both energy and
momentum conservation form the ellipse

x2s + x2r − xrxs− xr− xs = ap. (13)

The signal bandwidth is therefore given by the distance between the critical points xs = 1±√
(1+ap)/3. Inserting the expression for ap and inserting the original frequency variables we
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Fig. 7. Examples of (a) a signal mode power density profile and (b) pump mode power
density profile. These mode profiles are for a TM00 signal mode and TM02 pump mode
phase matched at 532 nm in a 550× 360 nm TiO2 waveguide with SiO2 cladding (first
presented in Fig. 1 of the main text).

can write the signal bandwidth as

δs ≡
√
2
3
×2rp = 2

(
2
3

)1/2[2
(
v−1p − vs−1

)

Ds
∆p+

(
Dp
Ds

)
∆2p

]1/2
, (14)

which exhibits a crossover in the scaling (∆p)α from α = 1/2 to α = 1 roughly at the pump
detuning |∆p|= 2|vs− vp|/(vsvpDp).

B. Overlap calculation with nonlinear susceptibility tensor elements

In this Appendix, we provide a generalized method of calculating overlap η and effective
nonlinearity γ that can be applied to any crystal symmetry and orientation, as well as a
derivation of the symmetry conditions that apply in polycrystalline anatase TiO2. We calculate
the effective nonlinearity of TOSPDC for phase-matched pump and signal modes using the
definition

γ =
3χ(3)ωp
4ε0c2n2

η , (15)

where n is the material index, χ(3) is the nonlinear susceptibility and η is the overlap
between the modes. Crystal symmetry is taken into account to determine relative magnitudes
of χ(3) tensor elements. We discuss considerations relevant to determining the strength of the
nonlinearity at the pump wavelength.
The overlap between phase-matched pump and signal modes propagating along the z-

direction is calculated using the x,y,z electric field components of each mode as

ηi jkl =
∫∫
dxdy Ei∗p E

j
s Eks Els

[∫∫ ∣∣Ep(x,y)
∣∣2 dxdy

]1/2 [∫∫
|Es(x,y)|2 dxdy

]3/2 , (16)

where Eip(x,y) and E
j
s (x,y) are the components of the pump and signal mode electric fields.

The denominator in Eq. (16) normalizes the pump and signal fields such that they satisfy the
condition

∫∫
|E|2 dxdy= 1. Figure 7 gives an example of a pair of modes with non-zero overlap.

Spatial distributions of the x,y,z E-field components of each mode in Eq. (16) are calculated
using simulations [29]. The subscripts i, j,k, l correspond to the Cartesian indices for crystal
axes along which the E-field is polarized. In our notation, the first index refers to the pump
polarization and the subsequent three indices refer to the polarization of the signal modes. In
the degenerate TOSPDC case, all three signal modes have the same E-field distribution.
To illustrate the calculation of overlap terms for a specific χ(3) tensor element, we first

consider the simplest case of an E-field and a single crystal oriented along the same axes
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Fig. 8. Examples of a) E-field orientation, b) crystal axes orientation and c) crystal axes
orientation with a rotation by an arbitrary angle in the xy plane.

(Figs. 8(a) and 8(b)). We use indices x,y,z for the E-field coordinate axes and i, j,k, l for the
crystal axes. In this case, the χii j j contribution to the TOSPDC process is determined by the
field overlap component ηii j j =

∫∫
Ex∗p ExsE

y
sEys dxdy. For the same electric field orientation but

a different crystal orientation shown in Fig. 8(c), the contribution of the χii j j term is calculated
by projecting the E-field onto the crystal axes, such that e.g. Ei = Ex cosθ + Ey sinθ and
Ej =−Ex sinθ +Ey cosθ and Ek =Ez , and then computing ηii j j =

∫∫
Ei∗p EisE

j
sE j
s dxdy. Because

the crystal symmetry determines the nonlinearity, projecting the E-field onto the crystal axes
allows us to calculate the total nonlinear overlap with the fewest number of unique terms, ηi jkl .
There are 81 possible permutations of the field polarizations in the overlap calculation

for ηi jkl . Their contribution to the total overlap is determined by the magnitude of the
corresponding nonlinear susceptibility tensor element, χi jkl . The material crystal structure of
the waveguide determines which χi jkl terms are non-zero and their relative magnitudes. As
an example, anatase TiO2 has tetragonal symmetry and belongs to the crystal class 4/mmm.
Our anatase TiO2 films polycrystalline with randomly oriented grains much smaller than the
wavelength (λs/30 and λp/10). As a result, an incoming field along the x-direction polarizes
the medium along all orthogonal crystal axes. Furthermore, this response is indistinguishable
from the polarization of the medium when the incoming field is along y or z. Therefore, we can
treat the material as effectively isotropic. The relationships between non-zero isotropic tensor
elements can be found in Ref. [30] and are as follows:

j jkk = kk j j = kkii= iikk = ii j j = j jii ; jkk j = k j jk = kiik = ikki= i j ji= jii j
jk jk = k jk j = kiki= ikik = i ji j = ji ji ; iiii= j j j j = kkkk = ii j j+ i ji j+ i j ji (17)

For a material containing large grains with n crystal orientations, the E-field projection can
be performed on each of the n crystal axes to identify the overlap terms of interest for each
non-zero χ(3) term. Considering the small grain sizes and the assumption of isotropic crystal
symmetry in our waveguide medium, we can significantly simplify this process. The relations in
Eq. (17) show that there are three independent χ(3) variables: ii j j, i ji j and i j ji. Furthermore,
when we consider the degenerate TOSPDC case, we find that all three signal modes are the
same; therefore, with a given pump index, we can arbitrarily arrange the signal indices and
obtain the same overlap:

ηii j j = ηi ji j = ηi j ji. (18)

This leads to three important conclusions: (i) all overlap terms of interest can be calculated by
considering a single crystal axis orientation; (ii) using the relations in Eq. (18) we can simplify
the number of overlap terms we calculate from 21 to 9 unique terms; and, (iii) we find that
χiiii = χ j j j j = χkkkk = 3χii j j, meaning that the contribution of the diagonal nonlinear tensor
elements χiiii, χ j j j j and χkkkk is three times stronger than the contribution generated by the
non-zero off-diagonal terms. Note that there are three times as many off-diagonal χ(3) terms,
so that each of the 9 unique overlap terms makes an equal contribution to the total overlap.
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Based on the symmetry of the χ(3) tensor, we can also gain an intuition for which
combinations of mode profiles yield non-zero overlap and contribute to the effective
nonlinearity. In the case of polycrystalline TiO2, each of the x, y, and z components appears
an even number of times in each non-zero χ(3) tensor element. The mode profile of the x, y,
and z components of the field must therefore be even, meaning that sign of Ex, Ey, and Ez is
symmetrical about the x and y axes. Alternatively, an even number of odd field profiles must be
present to yield non-zero overlap.
Nanoscale waveguides often have a significant evanescent field, requiring that nonlinear

overlaps take into account different χ(3) nonlinearities in the core and cladding regions. In
this case, the integration in Eq. (16) is carried out over the area of the core, top cladding,
and bottom cladding separately. These values are then used to calculate γ in each region
separately using Eq. (15). The total effective nonlinearity of the waveguide will be the sum
γ = γcore+ γtopcladding+ γbottomcladding.
In the main text we note that the χ(3) nonlinearity is parametrized using the nonlinear index

n2 =
3χ(3)

4n20ε0c
, (19)

which is often measured using Z-scan and self-phase modulation techniques, both of which
also rely on third-order nonlinear interactions. In order to produce photon triplets in the
telecommunications band via TOSPDC, the pump wavelength is in the visible. Z-scan and self-
phase modulation measurements are challenging in the presence of two-photon absorption and
other effects prevalent below the half-bandgap wavelength [41, 42]. For this reason, we have
applied a bandgap scaling approach of n2 [31] to nonlinearities measured in polycrystalline
anatase TiO2 films for the range of wavelengths λ = 800− 1560 nm [19]. The estimated
value of n2 can be considered as a lower bound because the model in Ref. [31] is known to
underestimate the magnitude of the nonlinearity at photon energies above three-quarters of the
bandgap. As a result, our calculated nonlinearities for a 532-nm pump wavelength and the
corresponding photon triplet generation rates can be considered a lower bound on expected
device performance.
In conclusion, we find the total overlap in polycrystalline anatase TiO2 by summing 9 unique

overlap terms calculated using Eq. (16). The effective nonlinearity is calculated, in turn, using
the total overlap as an input parameter in Eq. (4) of the main text. Our approach for determining
the effective interaction area and effective nonlinearity by assuming that our material has
isotropic symmetry can be used for other polycrystalline materials with grains on the order
of λ/10 or smaller. In addition, the general approach describes how to determine the effective
nonlinearity for arbitrary crystal symmetries, crystal orientations and electric field orientations.

C. Triplet generation rate in presence of propagation losses

In this appendix we derive Eqs. (6) and (7) of the main text. We note that the effects of multi-
photon absorption are ignored in this analysis and justify this assumption for the waveguide
parameters presented in the main text.
We use a formalism that extends the approach in Refs. [16, 24]. The starting point is the

expression for the TOSPDC light-matter interaction Hamiltonian

ĤI =
3ε0χ(3)

4

∫
dVÊ(+)

p (r, t)Ê(−)
r (r, t)Ê(−)

s (r, t)Ê(−)
i (r, t)+H.c. (20)

in terms of the electric field operators Ê(+)(r, t) = iA(x,y)
√

δk∑k ℓ(ω)exp [i(kz−ωt)]â(t),
where ℓ(ω) =

√
h̄ω/πε0n2(ω). ε0 is the vacuum permittivity, n(ω) the refractive index, and h̄
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is Planck’s constant. The label p refers to the pump field, and {r,s, i} refer to the signal fields.
δk= 2π/LQ is the mode spacing defined by the quantization length LQ, A(x,y) characterizes the
transverse spatial distribution of the field, taken to be normalized and frequency-independent.
We describe the pump mode as a strong classical field of the form

E(+)
p (r, t) = A0Ap(x,y)

∫
dωpβ (ωp)e[i(kp(ωp)z−ωpt)] , (21)

and consider the pump Gaussian amplitude β (ωp) = 21/4/(π1/4
√

σ)exp[−(ωp−ω0
p )
2/σ2]

where ω0
p is the pump carrier frequency and σ the pump pulse bandwidth. In general, A0 is

related to the peak pump power, but for a Gaussian pump amplitude, it is related to the average
pump power P by A0 =

√
P/πε0cnpR, with R the pulse repetition rate and np = n(ω0

p ).
In the absence of propagation losses, first-order perturbation theory with respect to the

interaction Hamiltonian allows us to write the output signal state as [8]

|Ψ⟩=
[
1− i

h̄

∫ t

t0
dt ′HI(t ′)

]
|0⟩= |0⟩+λ |Ψ3⟩ . (22)

The photon triplet state can be written as

|Ψ3⟩=
∫
dωpβ (ωp) ∑

ks,kr,ki
ℓ(ωr)ℓ(ωs)ℓ(ωi)

[∫ t

t0
dt ′

∫
dz φ(t,z) â†(kr)â†(ks)â†(ki)|0⟩

]
, (23)

where ωm = ω(km) for m = {s, r, i}. We have defined the frequency-dependent function
φ(t,z) = exp[i∆ω t]exp[i∆k z], where ∆k = (kp − kr − ks − ki) is the phase mismatch and
∆ω = (ωr +ωs +ωi −ωp) the energy mismatch. The spatial integration is carried out over
the waveguide length L. The photon triplet state amplitude λ is given by

λ =
3ε0χ(3)A0
4h̄Aeff

(δk)3/2, (24)

where the effective area is the inverse of η given in Eq. (16).
In order to include the propagation losses, we model them phenomenologically through

an exponential decay of the pump and signal fields. This approach ignores the probability
of observing signal modes with one or two photons as a result of photon scattering. Such
conditional states are highly unlikely to occur because the signal modes are found in the
vacuum |0⟩ with a near unit probability because λ ≪ 1. We are interested in the part of the
output state that involves three photons. If the interaction takes place at position z within a
waveguide that spans z = [−L/2,L/2], the corresponding amplitude is decreased by a factor:
e−(αp/2)(z+L/2) e−3(αs/2)(L/2−z), where we have used the attenuation coefficients αp and αs (in
units of inverse length) to describe pump and signal photon loss, respectively. Therefore, the
photon triplet state in Eq. (23) needs to be modified in the presence of photon losses to read

|Ψ3⟩ =
∫
dωpβ (ωp) ∑

kr,ks,ki
ℓ(ωr)ℓ(ωs)ℓ(ωi)

×
[∫ t

t0
dt ′

∫
dz φ(t ′,z)e−(αp−3αs)z/2e−(αp+3αs)L/4× â†(kr)â†(ks)â†(ki)|0⟩

]
.(25)

Because the propagation times inside the waveguide are much longer than 1/∆ω , we carry
out the time integration by setting t0 = −∞ and t = ∞ and obtain the energy conservation rule∫ ∞
−∞ dt ′ φ(z, t) = 2πei∆kz δ (ωp−ωr−ωs−ωi). Carrying out the spatial integration including
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the loss terms, imposes the phase-matching condition associated to momentum conservation,
which gives the triplet state

|Ψ3⟩=
(
2πλL
(δk)3

)
e−(αp+3αs)L/4∑

kr
∑
ks

∑
ki

Φ(ωr,ωs,ωi) â†(ωr)â†(ωs)â†(ωi)|0⟩, (26)

where the condition ωp = ωr+ωs+ωi holds. We have defined the spectral amplitude function

Φ(ωr,ωs,ωi) = β (ωp)ℓ(ωr)ℓ(ωs)ℓ(ωi)sinc[{∆k+ i∆α}L/4], (27)

where the function sinc(x) = sin(x)/x is highly peaked at x = 0. We have defined the loss
mismatch ∆α = (αp−3αs).
The signal intensity outside the waveguide is proportional to the expectation value

⟨Ψ3|Ê(−)(t)Ê(+)(t)|Ψ3⟩, with electric field operator Ê(+)(t) ∝ i
√

δk∑k ℓ(ω)exp[iωt]â(k), that
includes all possible wavevectors k. The detected intensity must be averaged over a specific time
interval. The Fourier components of the intensity sum up separately. Since the signal intensity
is proportional to the number of photons, we have N3 ∝ ⟨Ψ3|∑k â†(k)â(k)|Ψ3⟩. Accordingly,
the number of triplets per second (generalizing Eq. (19) in Ref. [24]) can be written as

R3 = R⟨Ψ3|∑
k
â†(k)â(k)|Ψ3⟩ (28)

= R
(2πλL)2(32)

δk3 e−(αp+3αs)L/2
∫∫∫ ∞

−∞
dωr dωs dωi g(ωr)g(ωs)g(ωi)|Φ(ωr,ωs,ωi)|2

where g(ωi) = [∂k/∂ω]ω=ωi is a factor resulting from the change of variable from k to ω and
R is the repetition rate of the pump. To further simplify the expression for R3, we expand the
phase mismatch ∆k to second order in the signal detuning νm from the point of PPMω0

m=ωp/3,
assuming that the pump frequency is fixed at the PPM point. The zeroth and first order terms in
the expansion vanish, giving

∆k = k(ωs)+ k(ωr)+ k(ωi)− k(ωp) =
Ds
2
[ν2r +ν2s +(νs+νr)2], (29)

where we have eliminated one of the signal detunings (νi) from the integration using the energy
conservation rule. Ds ≡ ∂ 2k/∂ω2 is the group velocity dispersion (GVD) of the signal mode,
which is the same for the all frequencies in mode-degenerate TOSPDC.
We note that for a Gaussian pump, the peak pump power P0 is related to the average pump

power P and to the repetition rate R by P0 = Pσ/
√
2πR and that

∣∣∫ dωpβ (ωp)
∣∣2 =

√
2πσ .

The dependence on the pump bandwidth σ disappears from the factor outside the integrals
characterizing the rate R3 in Eq. (28), so we can easily take the limit σ → 0 corresponding to
continuous wave (cw) pumping to obtain

R3 =
22 32 h̄c3n3p
π2(ω0

p )
2 γ2L2p

(
ω0

n20(ω)
g(ω0)

)3
× e−(αp+3αs)L/2

∫∫ ∞

−∞
dνrdνs|Φ(νr,νs)|2 . (30)

In the integration we used the approximation ℓ(ω0+νr)= ℓ(ω0+νs)= ℓ(ω0−νr−νs)= ℓ(ω0),
with ω0 = ωp/3. For notational convenience, we made the replacement

(2πλL)232
δk3 =

32(2π)2ε30c3n3p
h̄2(ω0

p )
2

2γ2L2P
∣∣∫ dωpβ (ωp)

∣∣2
, (31)

where γ is the effective nonlinearity from Eq. (15).
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In the main text, we also introduced Eq. (7) for estimating the triplet generation rate with
losses, not taking into account mode dispersion. The expression can be derived as follows. The
number of complete triplets that reach the end of the waveguide after being generated in the
segment of the waveguide from z to z+∆z can be estimated as

dN3(z) = ζ̃ Np(z)e−3αs(L−z) ∆z

= ζ̃ Np0 e−αp z e−3αs(L−z) dz , (32)

where Np0 is the number of pump photons at the input facet of the waveguide. ζ̃ quantifies
the conversion efficiency. Integrating the expression above from z = 0 to z = L gives the total
number of generated triplets

N3 ≡
∫ L

0
dzN3(z) =

ζ̃ Np0
αp−3αs

(
e−3αs L− e−αp L) . (33)

Maximizing this expression with respect to L gives the optimal length Lopt.
Due to strong light confinement within integrated waveguides and the potential to use high

pump powers with materials that have a high damage threshold, two-photon absorption must
be considered even for continuous wave pump sources. Multi-photon absorption is described
by the relationship

dI(z)
dz

=−α(1)I(z)−α(2)[I(z)]2 (34)

Where α(1) is single photon loss, α(2) is the two-photon absorption coefficient, and I(z) is the
light intensity in the waveguide as a function of position. We can solve Eq. (34) to calculate
light intensity as a function of z

I(z) =
αI0/(α(1) +α(2)I0)

eα(1)z−α(2)I0/(α(1) +α(2)I0)
(35)

Where I0 is the initial light intensity inside the waveguide. Intensity relates to the number of
photons in a waveguide propagating mode by N0 = I0Amode/h̄ωp where Amode is the cross-
sectional area of the mode. We can rewrite Eq. (32) to include the effect of two-photon
absorption

dN3(z) =
ζ̃ AmodeIp0

h̄ωp
α(1)
p /(α(1)

p +α(2)
p Ip0)

eα(1)
p z−α(2)

p Ip0/(α(1)
p +α(2)

p Ip0)
e−3α(1)

s (L−z)dz. (36)

We can use the ratio of Eq. (36) and (32) to gain insight under which conditions two-photon
absorption has a significant impact on device performance. We define an arbitrary threshold

α(2)
p Ip0
α(1)
p

(1− e−α(1)
p Lopt)< 0.2 (37)

below which the impact of two-photon absorption decreases the photon triplet generation rate
by less than 10%. For our proposed TiO2 devices, this corresponds to α(1)

p >10 dB/cm, a
maximum pump power of approximately 1 W, and α(2)

p = 3 cm/GW (determined by band-gap
scaling [30] of two-photon absorption measured in the wavelength range 780 – 1560 nm [19]).
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D. Coincidence detection signals

The temporal coherence of a triplet source is characterized by the third-order intensity
correlation function

G(3)(x1,x2,x3) = ⟨Ψ3|E(−)(x1)E(−)(x2)E(−)(x3)E(+)(x3)E(+)(x2)E(+)(x1)|Ψ3⟩. (38)

where |Ψ3⟩ is the triplet state defined in Eq. (26). For waveguides much longer than a typical
signal wavelength, we can replace the wave vector summations by frequency integrals. Energy
conservation allows us to eliminate one of the signal variables from the integration. We can
also absorb physical parameters like the cw pump amplitude, the effective waveguide area
and the material nonlinear susceptibility into a normalization factor factor that depends on the
waveguide length L. We assume a narrow cw pump at fixed frequency ωp. The triplet state is
completely characterized by the spectral amplitude Φ(ωr,ωs) in Eq. (27). The loss mismatch
parameter ∆α ≡ (αp− 3αs) introduces a frequency-dependent imaginary part to the spectral
amplitude, which broadens the triplet state in the frequency domain. The G(3) function in Eq.
(38) can be written in simplified form as

G(3)(x1,x2,x3) = |ψ(x1,x2,x3)|2, (39)

were ψ(x1,x2,x3) = ⟨0|E(+)(x3)E(+)(x2)E(+)(x1) |Ψ3⟩ is the so-called triphoton state [16],
which can be written as

ψ(x1,x2,x3) =
∫
dω1dω2dω3

∫
dωrdωs f1(ω1) f2(ω2) f3(ω3)e−iω1x1−iω2x2−iω3x3 (40)

×Φ(ωr,ωs)⟨0|a(ω1)a(ω2)a(ω3)a†(ωr)a†(ωs)a†(ωp−ωr−ωs)|0⟩.

We assume Gaussian detector filters f j(ω) = f0exp[−(ω − ω j)2/2σ2j ], where f0 is a
normalization constant and ω j is the center frequency of the j-th spectral filter. All filters
are assumed to have the same bandwidth σk = σ . We ignore the frequency-independent
normalization factor of the state.
The correlation function ⟨0|a(ω1)a(ω2)a(ω3)a†(ωr)a†(ωs)a†(ωi)|0⟩ in Eq. (40) contains six

terms corresponding to permutations of the frequency variables. We can interpret each term
by labelling a photon in the triplet source by its frequency. There are thus 3! = 6 ways for
these photons to reach three photodetectors. If the optical paths from the triplet source to each
detector are indistinguishable, then all six frequency permutations give the same contribution
to the field correlation function. It thus suffices to compute a single permutation to study the
triple coincidence signal. We choose ω1 = ωr, ω2 = ωs, and ω3 = ωp−ωr−ωs to obtain

ψ(x1,x2,x3) = e−iωpx3
∫∫

dωr dωs f (ωr) f (ωs) f (ωp−ωr−ωs)Φ(ωr,ωs)e−iωr(x1−x3)−iωs(x2−x3).
(41)

We expand the frequencies as ωm = Ωm + νm, with m = {r,s, i}, around central signal
frequencies Ωm that satisfy the energy conservation rule ωp = ωr+ωs+ωi at the PPM point.
In what follows we consider that the spectral filter f (ωm) is centered at the frequency Ωm.
Expanding the wavenumbers to second order in the frequency detunings νm around the PPM
point gives a phase mismatch ∆k as in Eq. (29). For mode-degenerate down-conversion the
group velocities are equal for the three photons, making the linear term vanish by energy
conservation for a cw pump. We can rewrite the integrals in terms in terms of frequency
detunings to obtain

G(3)(x1,x2,x3) =
∣∣∣∣
∫
dνrdνs fr(νr) fs(νs) fi(νr+νs)Φ(νr,νs)e−iνr(x1−x3)−iνs(x2−x3)

∣∣∣∣
2
. (42)
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The numerical evaluation of the integral is simplified by rescaling the detunings and delay
times as νn/ν0 and xn/τ0, where τ0 =

√
Ds L/2 and ν0 = 1/τ0 are the characteristic frequency

and timescale associated with a waveguide of length L and group velocity dispersion Ds of the
signal guiding mode.
The two-photon coincidence detection signal is proportional to the second-order correlation

function
G(2)(x1,x2) = ⟨Ê(−)(x1)Ê(−)(x2)Ê(+)(x2)Ê(+)(x1)⟩, (43)

which can be written by inserting the resolution of the identity in the Fock basis as

G(2)(x1,x2) =
∫
dω3|⟨0|a(ω3)E(+)(x2)E(+)(x1) |Ψ3⟩ |2, (44)

with a wavepacket amplitude given by

⟨0|a(ω3)E(+)(x2)E(+)(x1) |Ψ3⟩ =
∫
dω1dω2

∫
dωrdωsΦ(ωr,ωs) f (ω1) f (ω2)e−iω1x1−iω2x2

×⟨0|a(ω3)a(ω1)a(ω2)a†(ωr)a†(ωs)a†(ωp−ωr−ωs)|0⟩.

The evaluation of the vacuum correlation function gives 2! = 4 non-zero terms associated
with the commutation of the operators a(ω1) and a(ω2) with a(ωr) and a(ωs). These these
four terms can be made equal to each other by exchanging integration variables appropriately
when the optical paths to the detectors are equal. We thus evaluate a single representative term,
corresponding to ω1 = ωr and ω2 = ωs to obtain

G(2)(x1,x2) =
∫
dν3

∣∣∣∣
∫
dνrG(νr,νr+ν3) f1(νr) f2(νr+ν3)e−iνr(x1−x2)

∣∣∣∣
2
. (45)
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