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ABSTRACT
We propose a cavity QED approach to describe light-matter interaction of an infrared cavity field with an anharmonic vibration of a single
nonpolar molecule. Starting from a generic Morse oscillator potential with quantized nuclear motion, we derive a multilevel quantum Rabi
model to study vibrational polaritons beyond the rotating-wave approximation. We analyze the spectrum of vibrational polaritons in detail
and compare it with available experiments. For high excitation energies, the system exhibits a dense manifold of polariton level crossings
and avoided crossings as the light-matter coupling strength and cavity frequency are tuned. We also analyze polariton eigenstates in nuclear
coordinate space. We show that the bond length of a vibrational polariton at a given energy is never greater than the bond length of a Morse
oscillator with the same energy. This type of polariton bond strengthening occurs at the expense of the creation of virtual infrared cavity
photons and may have implications in chemical reactivity of polariton states.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5121426., s

I. INTRODUCTION

Cavity quantum electrodynamics (QED) has been intensely
studied for the development of quantum technology over the last
decade.1,2 Precision experiments under carefully controlled condi-
tions have been implemented to achieve conditions under which
quantum optical effects become relevant in applications.3–5 Chem-
ical systems and molecular materials at ambient conditions for long
have been considered to be unnecessarily complex and uncontrol-
lable to enable useful quantum optical effects. In recent years, the
demonstration of reversible modifications of chemical properties
in molecular materials via strong coupling (SC) to confined light
has extended the study of cavity QED as an emerging research in
chemical physics.6 Light-matter interaction in the strong coupling
(SC) and ultrastrong coupling (USC) regimes opens the possibil-
ity of creating novel hybrid photon-molecule states whose unique
properties may enable novel applications in chemistry and material
science.

In the infrared regime, the coupling of an intramolecular vibra-
tion to the quantized electromagnetic vacuum of a Fabry-Pérot

cavity can lead to the formation of vibrational polaritons.7–21 These
hybrid light-matter states exhibit fundamentally novel properties
in comparison with free-space vibrations. For instance, vibra-
tional polaritons may enable the selective control of chemical reac-
tions,21–23 a long-standing goal in physical chemistry.24 Strong
light-matter coupling provides a reversible way of modifying reac-
tive processes without changing the chemical composition of mate-
rials and also modifies the radiative and nonradiative dynamics
of molecular vibrations.25–31 Several recent studies on vibrational
strong coupling (VSC) within the ground electronic state have
shown that chemical reactions can proceed through novel path-
ways in comparison with free space. Under VSC, reactions may
be inhibited or catalyzed, or the product branching ratios may be
tilted.7,16,22,23 For instance, by strongly coupling the carbon-silyl (Si–
C) bond stretching vibration of 1-phenyl-2-trimethylsilylacetylene
to the electromagnetic vacuum of a resonant infrared microfluidic
cavity, the rate of Si−−C bond breakage has been shown to decrease
by a moderate factor of order unity.16 In another recent study,22

the catalytic effect of VSC on the hydrolysis of cyanate ions and
ammonia borane, under coupling of a Fabry-Pérot cavity with the
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broad OH infrared absorption band of water, was demonstrated.
The measured increase in the reaction rate constant by two orders
of magnitude relative to free space for cyanate and by four orders of
magnitude for ammonia borane is one of the first reports of cavity-
enhanced reactivity, a possibility earlier predicted for electron trans-
fer reactions in microcavities.32 In another study, very precise chem-
ical control was carried out on a compound having two available silyl
bond cleavage sites, Si−−O and Si−−C. For this system, simultane-
ous VSC with three spectrally distinct vibrational modes was shown
to modify the reactivity landscape such that the branching ratio of
Si−−C and Si−−O cleavage was altered by simply tuning the cavity
resonance conditions.23

The diverse experimental evidence on VSC represents a chal-
lenge for theoretical modeling, mainly due to the inherent complex-
ity of potential energy landscapes of reactive species, as well as collec-
tive effects that are relevant in molecular ensembles. Despite recent
theoretical progress,14,28,31,33–40 it remains unclear whether there is
a universal mechanism for the modification of ground state (GS)
chemical reactivity under VSC or the problem is system-specific.
Common explanations for experimental observations are based on
traditional chemical concepts such as changes in the potential energy
surface, modifications of an activation energy, or changes in the
relative energy of reactants and products. However, as we discuss
throughout, under VSC, it is difficult to justify the conventional
physical meaning assigned to these traditional concepts.

In this work, we introduce a cavity QED approach to study
anharmonic vibrational polaritons in the single-molecule limit. The
method describes the molecular subsystem as an individual anhar-
monic IR-active vibrational mode with quantized nuclear motion,
as illustrated in Fig. 1. We focus on molecules without perma-
nent dipole in equilibrium. This type of molecular species has
been studied before in IR cavities: carbonyl asymmetric stretching
in Fe(CO)5

14 and W(CO)6,26,27,41 and C==S asymmetric stretching
of CS2.14

The vibrational mode interacts with a vacuum field via elec-
tric dipole coupling. Discrete-variable representation (DVR) is used
to describe the cavity-free anharmonic vibration, and the elec-
tric dipole interaction is treated with a cavity QED approach that
includes counter-rotating terms. This total system Hamiltonian

FIG. 1. Schematic diagram of a single Fe(CO)5 molecule coupled to the quantized
electromagnetic vacuum of an infrared Fabry-Pérot cavity. The arrows represent
the nuclei displacements in a carbonyl asymmetric stretching mode.

corresponds to a multilevel quantum Rabi (MLQR) model. By con-
struction, vibrational polariton states can be analyzed in Hilbert
space and also in coordinate space. The method can be scaled to the
many-molecule regime.

The rest of the article is organized as follows: In Sec. I, we
review the properties of Morse oscillators. The construction of the
multilevel quantum Rabi model is discussed in Sec. II. In Sec. III,
we describe the spectrum of vibrational polaritons arising from
the model. In Sec. IV, we analyze the representation of vibrational
polaritons in nuclear coordinate space. In Sec. V, we analyze the level
crossings that occur in the excited polariton manifold. We conclude
and discuss future developments in Sec. VI.

II. MORSE OSCILLATOR
We model the nuclear motion of an anharmonic nonpolar

vibration with a Morse potential42

V(q) = De(1 − exp[−a(q − qe)])2, (1)

where De is the classical dissociation energy (without zero point
motion), qe is the equilibrium bond length, and a is a parameter.
The vibrational Schrödinger equation with a Morse potential can be
solved analytically in terms of associated Laguerre polynomials42,43

or numerically using grid-based methods.44 We use DVR on a
uniform grid with Fourier basis functions45 to obtain the vibra-
tional wavefunctions and eigenvalues of the Morse potential. For the
dimensionless parameters De = 12.0, qe = 4.0, and a = 0.2041, the
corresponding potential is shown in Fig. 2(a). For the dimension-
less mass μ = 1, this potential has 24 bound states in agreement with
Ref. 46 and is used throughout. In the supplementary material, we
show that our conclusions do not vary qualitatively for other val-
ues of a and μ, with fixed De. Our results also qualitatively hold
for other values of De, provided the number of Morse bound states
still exceeds the maximum vibrational level that significantly con-
tributes to the vibrational polariton spectrum within the energy
range considered in this work.

As we explain below, the degree of anharmonicity in the poten-
tial has a profound effect in the behavior of vibrational polaritons.
For the Morse potential, the anharmonicity can be easily tuned by
changing the parameters a and μ, for fixed binding energy De. The
relation between these parameters and the degree of anharmonic-
ity can be understood from the exact eigenvalues of the Morse
Hamiltonian,42

Eν = −De + h̵a
√

2De

μ
(ν + 1/2) − h̵2a2

2 μ
(ν + 1/2)2, (2)

where ν is the vibrational quantum number. By comparing this
expression with the Dunham expansion,47

Eν = Y00 + ω0(ν + 1/2) − ω0χe(ν + 1/2)2 + . . . , (3)

where ω0 is the vibrational frequency, the anharmonic coefficient χe
can be written as

χe =
h̵2aπ

(2μDe)1/2
. (4)

Vibrations with lower μ and higher a therefore have stronger
spectral anharmonicity, for fixed dissociation energy. We illustrate
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FIG. 2. (a) Morse potential V (q), in units of the classical
dissociation energy De. We use De = 12, qe = 4, a = 0.204
(dimensionless) to generate 24 bound states. (b) Anhar-
monicity of the energy spacing between adjacent Morse
eigenstates ΔE ≡ων ,ν−1 −ω10. We use De = 12.0, qe = 4.0
for all points, with μ = 3 and a = 0.204 (circles), μ = 1 and
a = 0.175 (diamonds), and μ = 1 and a = 0.233 (squares).
The dashed line is the harmonic oscillator limit (ΔE = 0).

this dependence in Fig. 2(b), where the change in the vibrational
energy level spacing relative to the fundamental frequency ω10 for
ν = 1← ν = 0 is shown for different values of μ and a. The level spac-
ing between adjacent vibrational states can be significantly smaller
than the harmonic oscillator value ω10, even for relatively low values
of ν.

The electronic wavefunction determines the contribution to the
molecular dipole moment of the electron charge distribution, which
in the Born-Oppenheimer approximation is a parametric function
d({q}) of all nuclear coordinates {q}. In general, the dipole func-
tion d({q}) can be obtained using ab initio quantum chemistry for
simple molecular species. Since we are interested in understanding
universal features of nonpolar anharmonic vibrational polaritons,
we adopt a model functional form d(q) that captures the correct
physical behavior of an individual anharmonic IR-active vibrational
mode without permanent dipole moment. (i) The function must be
continuous over the entire range of q; (ii) its value at the equilib-
rium distance must be zero; (iii) the function must have a maximum
at some finite value of q; and (iv) the function must asymptotically
vanish as the neutral bond dissociates into neutral species. These
requirements are satisfied by the following function:

d(q) = (q − c0) exp [−(q − c1)2/σ2], (5)

which we show in Fig. 3(a) for c0 = c1 = qe and σ = 0.5qe. c0 is the
coordinate at which d(q) = 0; σ and c1 control the location and mag-
nitude of the maximum and minimum values of the dipole function,
also its behavior far from the equilibrium distance. For c1 = qe, the
function d(q) is symmetric with respect to qe [as in Fig. 3(a)]. For
c1 > qe, the maximum dipole moment moves to higher values of q
and the function d(q) becomes asymmetric around qe.

In order to describe light-matter coupling properly, we need a
reasonable description of the electric dipole moment not only near
the equilibrium distance qe but also in the long range up to the dis-
sociation threshold. This is because strong light-matter coupling in a
cavity can strongly admix several vibrational eigenstates with high ν.
Furthermore, we are interested in studying how highly exited polari-
tons behave near the energy dissociation threshold of the free-space
molecular subsystem. Therefore, dipole matrix elements between all
bound and unbound states of the Morse potential must be accu-
rately estimated. In Figs. 3(b) and 3(c), we show the scaling with
ν of the diagonal and off-diagonal vibrational dipole matrix ele-
ments. The permanent dipole moments ⟨ν∣d̂(q)∣ν⟩ decrease in mag-
nitude with ν [panel 3(b)], as expected from the behavior of d(q)
on a neutral Morse oscillator. This trend also holds for different
values of a and μ in the Morse potential. The higher the oscilla-
tor’s mass, the lower the rate of decrease of the permanent dipoles.
Figure 3(c) shows that for a fixed vibrational eigenstate |ν′⟩, the
transition dipole moments with neighboring states |ν⟩ (ν ≠ ν′) can-
not be ignored and must be taken into account in the light-matter
coupling.

In linear infrared absorption of high-frequency modes (e.g., ω10
≈ 1700 cm−1 for carbonyl stretching), only the ground vibrational
level ν = 0 is populated at room temperature (kT/h̵ω10 ≪ 1). The
oscillator strength of the fundamental absorption peak (ν = 0 → 1)
and its overtones (|Δν| ≥ 2) are thus proportional to ∣⟨ν∣d̂(q)∣0⟩∣2
with ν ≥ 1. Figure 3(c) (circles) captures the typical IR absorption
pattern of decreasing overtone strength for higher Δν.48 This qual-
itatively correct behavior validates the dipole model function d(q)
in Eq. (5).

Using strong infrared laser pulses, it is possible to prepare
vibrational modes with high quantum numbers ν ≫ 1, even when

FIG. 3. (a) Model electric dipole function d(q) for the vibrational mode of an IR-active nonpolar molecule [d(qe) = 0], normalized to its maximum value. (b) Permanent dipole
moment matrix elements ⟨ν|d(q)|ν⟩ as a function of the vibrational quantum number ν. (c) Dipole matrix elements ⟨ν|d(q)|ν′⟩ as a function of ν, for ν′ = 0 (circles) and
ν′ = 5 (squares). Dipole matrix elements are normalized to the maximum of d(q). The dipole function parameters used are c0 = c1 = 4 and σ = 2. The Morse parameters used
are De = 12.0, qe = 4.0, a = 0.204, and μ = 1.
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kT/h̵ω10 ≪ 1. This off-resonant driving is known as vibrational lad-
der climbing and has been used in nonlinear spectroscopic measure-
ments.49 Vibrational ladder climbing is determined by the matrix
elements ⟨ν∣d̂∣ν′⟩ with ν′ ≠ ν ≥ 1, corresponding to dipole transitions
between overtones. Figure 3(c) (squares) shows that these high-ν
matrix elements can be as strong as the first overtones of the fun-
damental transition (circles), over a range of neighboring levels with
|ν − ν′| ≤ 4, for our choice of d(q). We show below that ignoring
dipole couplings between high-ν overtones fails to describe the rich
and complex physics of the excited polariton manifold up to the dis-
sociation threshold. Excited polariton levels can be expected to be
relevant in the description of nonlinear cavity transmission signals,
chemical reactions, and heat transport.

III. MULTILEVEL QUANTUM RABI MODEL
We derive the total Hamiltonian for the molecule-cavity system

starting using the Power-Zineau-Woolley (PZW) multipolar formu-
lation of light-matter interaction.50 The PZW frame is equivalent to
minimal-coupling by a unitary transformation that eliminates the
vector potential A(x) from the Hamiltonian.50 We divide the total
Hamiltonian Ĥ in the three terms of the form Ĥ = ĤM + ĤC + ĤLM.
The molecular part is given by

ĤM = Ĥel + Ĥnuc + ∫ dx ∣P(x)∣2, (6)

where the first two terms correspond to the electronic and nuclear
Hamiltonians in the Born-Oppenheimer approximation, and the
third term is the dipole self-energy, with P(x) being the macroscopic
polarization density. We follow the approach in Refs. 51 and 52,
where the dipole self-energy is shown to result in energy shifts that
can be formally absorbed into Ĥel. This should be compared with
Refs. 39 and 53, in which an explicit quadratic dependence on charge
coordinates is kept in ĤM.

The nuclear Hamiltonian Ĥnuc in Eq. (6) in general describes
not only vibrational motion but also molecular rotations. Since we
are interested in condensed-phase vibrational polaritons, we assume
that molecular rotations are slower than the time scale for polari-
ton formation and only represent additional contributions to the
vibrational absorption linewidth.54

The free cavity Hamiltonian ĤC is given by

ĤC =
1
2 ∫ dx(∣D(x)∣2 +

1
μ0
∣H(x)∣2)

=∑
ξ
h̵ωξ(â†

ξ âξ + 1/2), (7)

where D(x) and H(x) are the macroscopic displacement and mag-
netic fields, respectively. μ0 is the magnetic permeability. In the
second line, we imposed canonical field quantization into a set of
normal modes with continuum label ξ, frequencies ωξ , and anni-
hilation operators âξ . Light-matter interaction in the PZW frame,
ignoring magnetic moments, is given by50

ĤLM = ∫ dx P(x) ⋅D(x). (8)

The solutions of the electronic Hamiltonian Ĥel are assumed to
be known within the Born-Oppenheimer approximation such that

they give the dipole function d(q). We adopt a point-dipole approx-
imation for the polarization density, i.e., P(x) = d δ(x − x0), where d
is the electric dipole vector and x0 is the location of the molecule.

We adopt a single-mode approximation for the cavity Hamil-
tonian in Eq. (7) by setting ωξ ≡ ωc for all ξ and define the effec-
tive field operator â = ∑ξâξ (up to a normalization constant).
This simplification is justified in Fabry-Pérot cavities with a large
free-spectral range (FSR ∼ 300–500 cm−19) and low transmission
linewidths (FWHM ∼ 10–40 cm−19). In this approximation, the
intracavity displacement field operator can be approximated by
D̂ ≈ E0(â + â†), where E0 can be considered as the amplitude of
the vacuum field fluctuations or the electric field per photon (ignor-
ing vectorial character). E0 scales as 1/

√
Vm with the effective cavity

mode volume Vm.55 We thus write the light-matter interaction term
as

ĤLM = E0 (d̂+ + d̂−)⊗ (â + â†), (9)

where the up-transition operator d̂+ projected into the vibrational
energy basis |ν⟩ is given by

d̂+ = ∑
ν,ν′>ν
⟨ν′∣d(q)∣ν⟩∣ν′⟩⟨ν∣, (10)

with d̂− = (d̂+)†. Permanent dipole moments are found to give
negligible contributions for the range of light-matter couplings con-
sidered. By combining Eqs. (6), (7), and (9), we arrive at the total
system Hamiltonian

Ĥ = ωc â†â +∑
ν
ων∣ν⟩⟨ν∣ +∑

ν
∑
ν′>ν

gν′ν(∣ν′⟩⟨ν∣ + ∣ν⟩⟨ν′∣)(â + â†), (11)

where ων is the energy of the vibrational eigenstate |ν⟩, and gν′ν
= E0⟨ν′∣d(q)∣ν⟩ for ν′ > ν is a state-dependent Rabi frequency. The
zero of energy is defined by the energy of the vibrational ground
state (ν = 0) in the cavity vacuum. Equation (11) corresponds to
a multilevel quantum Rabi (MLQR) model, which reduces to the
quantum Rabi model for a two-level system,56–58 when the vibra-
tional subspace is truncated to ν = 0, 1 and the energy reference is
rescaled.

The vacuum field amplitude E0 is considered here as a tun-
able parameter that determines the light-matter coupling strength.
In a cavity with small mode volume, the mode amplitude E0 can
be large and tunable by fabrication.12 Moreover, the cavity detuning
Δ ≡ ωc − ω10 is another energy scale that can be tuned by fabrication.

For convenience, we define the state-independent Rabi fre-
quency

g ≡ g10 = E0 ⟨1∣d(q)∣0⟩. (12)

Although we use the single parameter g to quantify light-matter
coupling strength throughout, we emphasize that dipole transitions
ν ↔ ν′ in Eq. (11) have in general different coupling strengths. As
we show below, due to the multilevel nature of the molecular emit-
ter, counter-rotating terms in Eq. (11) start to become relevant in the
polariton spectrum for values of g/ω10 that would still be considered
within the rotating-wave approximation for the qubit.31

IV. SPECTRUM OF VIBRATIONAL POLARITONS
In order to gain some physical intuition about the structure

of vibrational polaritons, in Fig. 4, we illustrate thelight-matter
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FIG. 4. (a) Illustration of resonant light-matter coupling between a Morse oscilla-
tor with dissociation energy De and a quantized cavity field with photon number n
(unbound). Each Morse potential corresponds to the uncoupled subspace |ν⟩|n⟩.
(b) Low energy couplings involving the subspace S1 = {∣1⟩∣0⟩, ∣0⟩∣1⟩} at E
≈ ω10, and S2 = {∣2⟩∣0⟩, ∣1⟩∣1⟩, ∣0⟩∣2⟩} at E ≈ 2ω10. Dipole coupling within
S1 leads to the formation of the lower and upper polaritons, and coupling within
S2 leads to the formation of a polariton triplet. (c) High energy couplings involving
S6 at E ≈ 6ω10. State |6⟩|0⟩ is red shifted with respect to |0⟩|6⟩ by δ6, for ω10 =
ωc . The highlighted levels can strongly admix.

coupling scheme implied by the uncoupled basis |ν⟩|n⟩, where |n⟩
is a cavity Fock state. We can associate a complete vibrational man-
ifold {|ν⟩; ν = 0, 1, 2, . . .} to every Fock state of the cavity |n⟩. The
ground level in each vibrational manifold (ν = 0) has energy nωc in
the Fock state |n⟩, and the dissociation energy E∞ becomes

E∞ = De + nωc. (13)

Only in the cavity vacuum (n = 0), the bond dissociation energy
coincides with the value expected for a Morse oscillator in free space.
In general, the energy required to break a chemical bond depends on
the quantum state of the cavity field.

Vibrational manifolds with different Fock states can cou-
ple each other via the light-matter term in Eq. (9). Since parity
is broken for vibrational states due to anharmonicity, the only
quasi-selection rule that holds is Δn = ±1 because the free cav-
ity Hamiltonian ĤC commutes with parity. Therefore, vibrational
states |ν⟩ and |ν′⟩ that differ by one photon number can admix
due to light-matter coupling. Because of anharmonicity, admix-
ing of vibrational states with |ν − ν′|≥ 1 is allowed. The amount
of admixing that can occur between vibrational eigenstates in

different manifolds is ultimately determined by the electric dipole
function d(q).

The number of bare states |ν⟩|n⟩ that can potentially admix
to form vibrational polariton eigenstates grows as the total energy
increases. Throughout this work, we include all vibrational and Fock
basis states that are necessary to converge the polariton spectrum up
to a given energy of interest E < De. Figure 4(b) shows that for the
lowest Fock states, resonant coupling at energy E ≈ ω10 only involves
the subspaceS1 = {∣1⟩∣0⟩, ∣0⟩∣1⟩} for g/ω10≪ 1. This coupling results
in the formation of the so-called lower polariton (LP) and upper
polariton (UP), which are observable in linear spectroscopy.6,9 They
can be written as

∣Ψ1⟩ = α∣0⟩∣1⟩ − β∣1⟩∣0⟩, (14a)

∣Ψ2⟩ = β∣0⟩∣1⟩ + α∣1⟩∣0⟩, (14b)

where |Ψ1⟩ and |Ψ2⟩ correspond to LP and UP, respectively. The
orthonormal coefficients α and β depend on g and Δ. |Ψ1⟩ and |Ψ2⟩
in Eq. (14) coincide with the first excitation manifold of the Jaynes-
Cummings model.59 Figure 4(b) also shows that for g/ω10 ≪ 1,
resonant coupling at energy E ≈ 2ω10 only involves the subspace
S2 = {∣2⟩∣0⟩, ∣1⟩∣1⟩, ∣0⟩∣2⟩}, leading to the formation of three polari-
ton branches, as discussed below. For g/ω10 ∼ 0.1, coupling of bare
states |ν⟩|n⟩ beyond S1 and S2 is allowed by counter-rotating terms
in Eq. (9).

In Fig. 4(c), we consider the coupling between vibrational man-
ifolds around energy E ≈ 6 ω10. If the molecular vibrations were
harmonic, vibrational states |ν⟩ would have energy νω10. Due to
anharmonicity, vibrational levels in free space have energy

ων = νω10 − δν,

where δν > 0 is the shift from a harmonic oscillator level, shown
in Fig. 2 for a Morse oscillator. For ν = 6, the anharmonic shift
δ6 is not negligible in comparison with ω10, which means that for
the smaller couplings g/ω10 ≪ 1, the number of bare states |ν⟩|n⟩
that can resonantly admix is relatively limited. This resembles the
role of anharmonicity in limiting the efficiency of vibrational ladder
climbing using laser pulses.49,60

On the other hand, Fig. 4(c) suggests that for larger coupling
ratios g/ω10, there is a greater number of quasidegenerate bare states
|ν⟩|n⟩ that are energetically available to admix within an energy
range 2δ. As the total energy increases, the density of quasidegen-
erate bare states that can strongly admix within a bandwidth δE
grows. We show below that this complex coupling structure leads to
a large density of true and avoided crossings in the excited polariton
manifold, even for relatively low values of the coupling ratio g/ω10.

In Fig. 5, we show the spectrum of anharmonic vibrational
polaritons as a function of g and Δ. Figure 5(a) shows that the system
has a unique nondegenerate ground state |Ψ0⟩ (GS). The first excited
manifold features a LP-UP doublet that scales linearly with g over the
range of couplings considered (R2 = 1.000 for log-log fit). However,
the LP-UP splitting is not symmetric around E = ω10, which is the
energy of the degenerate bare states |1⟩|0⟩ and |0⟩|1⟩ for ωc = ω10.
Figure 5(a) shows the polariton triplet around E = 2ω10, associated
with light-matter coupling within the subspace S2 discussed above
[see Fig. 4(b)]. Multiple true and avoided crossings occur at energies
E ≥ 2ω10 over the entire range of couplings considered. The density
of energy crossings grows with increasing energy.
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FIG. 5. (a) Spectrum of anharmonic vibrational polaritons as a function of the cou-
pling strength g/ω10, for resonant coupling ωc = ω10. The ground state (GS), lower
(LP), and upper (UP) are highlighted. (b) Vibrational polariton spectrum as a func-
tion of the cavity detuning from the fundamental frequency Δ = ωc − ω10. The GS
and LP are highlighted. We set g = 0.1ω10. Energy is in units of ω10.

In Fig. 5(b), we show the polariton spectrum as a function of
detuning Δ ≡ ωc − ω10, for g/ω10 = 0.1. Several true and avoided
crossings develop in the excited manifold. When Δ ∼ g, the energetic
ordering of the excited polaritons can change in comparison with the
resonant regime (Δ/g≪ 1). For example, there is an avoided crossing
at E ≈ 1.9 ω10 near Δ ≈ 0.05 ω10. The 5th and 6th excited polari-
tons develop a true crossing at Δ ≈ −0.3 ω10. This raises concerns
regarding the assignment of spectral lines in linear and nonlinear
cavity transmission spectroscopy for light-matter coupling in the
dispersive regime |Δ|/g ≳ 1.

V. VIBRATIONAL POLARITONS IN NUCLEAR
COORDINATE SPACE

In molecules and materials, the strength of a chemical bond
is commonly associated with its vibration frequency ω0 via the
relation

ω0 =
√
k/μ, (15)

where k is the bond spring constant and μ is the reduced mass of
the vibrating nuclei. Stronger bonds (higher k) thus lead to higher
vibrational frequencies. This simple argument has also been used to
discuss the bonding character of vibrational polaritons under strong
coupling.6 In this section, we show that the description of the bond-
ing strength of vibrational polaritons is far more complex than the
commonly used spring model suggests.

In order to analyze vibrational polaritons in nuclear coordinate
space, keeping photons in Hilbert space, let us expand the eigenstates
of Eq. (11) in the uncoupled basis {|ν⟩|n⟩} as

∣Ψj⟩ =∑
ν,n

cjνn∣ν⟩∣n⟩, (16)

where cjνn are orthonormal coefficients associated with the jth eigen-
state. We can rewrite Eq. (16) by combining vibrational components
associated with a given photon number n as

∣Ψj⟩ =∑
n
∣Φj

n⟩∣n⟩, (17)

where ∣Φj
n⟩ = ∑ν c

j
νn∣ν⟩. The state ∣Φj

n⟩ can be interpreted as a vibra-
tional wave packet conditional on the cavity photon number. Its
nuclear coordinate representation is simply given by the projection

Φjn(q) = ⟨q∣Φj
n⟩. (18)

For concreteness, we show in Fig. 6 a set of normalized conditional
probability distributions |Φjn(q)|2 with n ≤ 4, for the excited polari-
ton eigenstate |Ψ6⟩ under resonant light-matter coupling. Since the
energy of excited polariton |Ψ6⟩ tends asymptotically to E6 ≈ 3 ω10
as g → 0, one could expect the normalized probability distribution
|Φ6n(q)|2 to resemble the behavior of the Morse oscillator eigen-
function with ν = 3 for g/ω10 ≪ 1. Figure 6 (lower panel) shows
that indeed the vacuum component (n = 0) of |Ψ6⟩ qualitatively
matches the node structure of the bare Morse oscillator state |ν = 3⟩
for g/ω10 = 0.1.

Figure 6 also shows that the nuclear densities |Φ6n(q)|2 associ-
ated with n ≥ 1 can also approximately resemble the node pattern of
a bare Morse oscillator with the appropriate number of excitations,
for small values of g/ω10. For example, according to what was said,
|Ψ6⟩ should have components in the uncoupled basis |ν⟩|n⟩ such that
ν + n = 3 at zero detuning (ωc = ω10). For g/ω10 = 0.1, Fig. 6 shows
that indeed for n = 1 the nuclear density |Φ61(q)|2 of state |Ψ6⟩ has
a node structure similar to the bare Morse eigenstate |ν = 2⟩, i.e., it
has two nodes. The nuclear densities associated with n = 2 and n = 3
also seem to satisfy a conservation rule for the total number of exci-
tations (ν + n). This rule however is broken for the n = 4 nuclear
wave packet Φ64(q) (Fig. 6, upper panel), which has a node structure
similar to the bare Morse eigenstate |ν = 1⟩, corresponding to a total
number of excitations ν + n = 5.

In order to assess the contribution of each photon-number-
dependent nuclear wave packetΦjn(q) on the jth polariton eigenstate
|Ψj⟩, we show in Fig. 7 the probability amplitudes |cνn|2 [see Eq. (16)]
as a function of the coupling ratio g/ω10, for the excited polariton
eigenstates |Ψ6⟩ and |Ψ8⟩. These two excited states tend asymptoti-
cally to the energy E ≈ 3 ω10 as g→ 0 and therefore can be expected to
be mainly composed of uncoupled states |ν⟩|n⟩ such that ν + n = 3,
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FIG. 6. Conditional probability densities |Φ6n(q)|2 for the excited polariton eigen-
state |Ψ6⟩, for coupling strength g/ω10 = 0.1. Coordinates are in units of the bare
equilibrium bond length qe. All densities are normalized.

for resonant coupling. Figure 7 shows that this indeed occurs for
g/ω10 ≪ 1. In this small coupling regime, the selected polariton
eigenstates can be approximately written in the basis |ν⟩|n⟩ as

∣Ψ6⟩ ≈ ∣3⟩∣0⟩ (19)

and

∣Ψ8⟩ ≈ a∣0⟩∣3⟩ + b∣1⟩∣2⟩, (20)

where |a|2 ≈ |b|2 = 0.5. As the coupling strength reaches the regime
g/ω10 ∼ 0.1, the near resonant coupling between vibrational man-
ifolds with higher photon numbers in Fig. 4 leads to the emer-
gence of wavefunction components with lower vibrational quantum
numbers. For instance, for g/ω10 = 0.1, the excited state |Ψ6⟩ is
approximately given by

∣Ψ6⟩ ≈ a∣1⟩∣2⟩ + b∣0⟩∣3⟩ + c∣2⟩∣1⟩ + d∣1⟩∣4⟩, (21)

FIG. 7. Probability amplitudes |cνn|2 in the uncoupled basis |ν⟩|n⟩ for excited polari-
ton eigenstates |Ψ6⟩ (a) and |Ψ8⟩ (b), as a function the coupling strength g/ω10.
Curves are labeled by the quantum numbers (ν, n). We set ωc = ω10.

where |a|2 ∼|b|2 > |c|2 ≫|d|2. In other words, the state evolves from
a bare Morse oscillator |ν = 3⟩ in vacuum [see Eq. (19)], into a state
with a lower mean vibrational excitation and higher mean photon
number as g/ω10 grows. On the other hand, the state |Ψ8⟩ at g/ω10
= 0.1 can be written as

∣Ψ8⟩ ≈ a∣3⟩∣0⟩ + b∣2⟩∣1⟩ + c∣0⟩∣3⟩ + d∣1⟩∣4⟩, (22)

where |a|2 ≈ 1/2 > |b|2 > |c|2 ≫|d|2, which also develops compo-
nents with lower vibrational quanta and higher photon numbers
in comparison with Eq. (20). The emergence of uncoupled compo-
nents with ν + n ≠ 3 in Eqs. (21) and (22) is a consequence of the
counter-rotating terms in Eq. (11). Although the results in Figs. 6
and 7 were obtained for specific polariton eigenstates, we find that
they qualitatively describe the behavior of most excited polaritons
|Ψj⟩ with energies Ej ≫ ω10, i.e., above the LP and UP frequency
regions.

We can also understand the structure of vibrational polaritons
in coordinate space and Fock space by analyzing the dependence of
the mean bond distance ⟨q̂⟩ and the mean photon number ⟨â†â⟩
with the coupling parameter g and cavity detuning Δ, for selected
polariton eigenstates. In Fig. 8, we compare the dependence of these
observables on g and Δ for the system ground state |Ψ0⟩ (GS), the
lower polariton state |Ψ1⟩, and the upper polariton state |Ψ2⟩. In the
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FIG. 8. Mean bond length ⟨q̂⟩ and mean cavity photon number ⟨â†â⟩ as a function
of coupling strength g/ω10 [(a) and (c)] and cavity detuning Δ [(b) and (d)], for the
system ground state (dashed line), lower polariton (solid line), and upper polariton
(dotted-dashed line). We set Δ = 0 in panels (a) and (c) and g/ω10 = 0.1 in panels
(b) and (d). Energy is in units of ω10.

regime g/ω10 ≪ 1, both LP and UP have approximately the same
bond length, given by

⟨q̂⟩ ≈ 1
2
(⟨0∣q̂∣0⟩ + ⟨1∣q̂∣1⟩), (23)

with the expectation value taken with respect to Morse eigenstates
|ν⟩.

Figure 8(a) shows that as the coupling strength increases, the
bond length of the LP ⟨q̂⟩LP decreases whilst ⟨q̂⟩UP grows. The value
of ⟨q̂⟩ for the UP is upper bounded by the bond length of the
first excited Morse state |ν = 1⟩. Considering that the bond dis-
tance is inversely related to its strength, for resonant coupling the
molecular bond in the LP state becomes stronger relative to the UP
with increasing coupling strength, although both polariton states
experience bond strengthening in comparison with the Morse eigen-
state |ν = 1⟩, which is in the same energy region as LP and
UP (E/ω10 ≈ 1).

Bond strengthening should be accompanied by the creation of
virtual cavity photons and bond softening by the decrease in the
mean photon number. Figure 8(b) shows that the GS, LP, and UP
states follow this behavior as a function of g/ω10, for resonant cou-
pling. We show in panels 8 (b) and (d) that for detuned cavities, the
compromise between bond strength and cavity photon occupation
also holds. Within the range of system parameters considered, we
find that this compromise also holds for higher excited vibrational
polaritons, as Fig. 9 shows for states |Ψ6⟩ and |Ψ8⟩.

Bond strengthening of vibrational polaritons can be under-
stood by recalling that an eigenstate |Ψj⟩ in the vicinity of a bare

FIG. 9. Mean bond length ⟨q̂⟩ and mean cavity photon number ⟨â†â⟩ as a function
of coupling strength g/ω10 [(a) and (c)] and cavity detuning Δ [(b) and (d)], for
excited polaritons |Ψ6⟩ (solid line) and |Ψ8⟩ (dashed line). We set Δ = 0 in panels
(a) and (c) and g/ω10 = 0.1 in panels (b) and (d). Energy is in units of ω10.

Morse energy level Eν ′ in general has nonvanishing components in
the uncoupled basis |ν⟩|n⟩ with ν < ν′ [see Eq. (16)]. These low-ν
components contribute to the stabilization of the molecular bond
even at high excitation energies.

VI. ENERGY CROSSINGS IN THE EXCITED POLARITON
MANIFOLD

We discussed in Sec. III how the density of polariton levels
increases with energy, ultimately due to the large number of near-
degenerate uncoupled subspaces ∣ν⟩∣n⟩ (see Fig. 4). Light-matter
coupling leads to the formation of closely spaced polariton levels
that can become quasidegenerate at specific values of g and Δ. As
the Hamiltonian parameters (g, Δ) are tuned across the degeneracy
point, the polariton levels may undergo true or avoided crossing. For
a Hamiltonian like the quantum Rabi model for the qubit57,58,61 and
its multilevel generalizations,62 parity is a conserved quantity. There-
fore, polaritons in the quantum Rabi model have well-defined parity
and level crossings are analyzed in the usual way: states with oppo-
site parity undergo true crossing under variation of a Hamiltonian
parameter. In particular, the crossing of the ground state with the
lower polariton state at g/ωc = 1 marks the onset of the deep strong
coupling regime of the quantum Rabi model.31,63,64

Parity conservation in the quantum Rabi model ultimately
emerges from the even character of the underlying microscopic
Hamiltonians that describe the material system and the cavity field.
The harmonic oscillator Hamiltonian that describes the cavity field
is invariant under the transformation â → −â and therefore com-
mutes with parity, as expected. For the molecular system, let q̂ and p̂
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FIG. 10. (a) Spectral region with an avoided crossing (circled in gray) involving the excited polaritons |Ψ6⟩ (blue) and |Ψ7⟩ (green). [(b) and (c)] Main components of |Ψ6⟩
and |Ψ7⟩, respectively, in the uncoupled basis |ν⟩|n⟩. Curves are labeled by the quantum numbers (ν, n). We set ωc = ω10.

FIG. 11. (a) Spectral region with a true crossing (circled in gray) involving the excited polaritons |Ψ27⟩ (blue) and |Ψ28⟩ (green). [(b) and (c)] Main components of |Ψ27⟩ and
|Ψ28⟩, respectively, in the uncoupled basis |ν⟩|n⟩. Curves are labeled by the quantum numbers (ν, n). We set ωc = ω10.

represent position and momentum operators in the material Hamil-
tonian ĤM. Then, polariton eigenstates of the coupled light-matter
system would only have well-defined parity if ĤM is invariant under
the parity transformation q̂ → −q̂ and p̂ → −p̂. The Morse poten-
tial in Eq. (1) is not invariant under the transformation q→ −q and
qe → −qe and therefore breaks the parity of the material system. This
is the origin of vibrational overtone transitions with |Δν| ≥ 2. There-
fore, polariton eigenstates of the MLQR model are not eigenstates of
parity.

Even when vibrational polaritons do not have well-defined par-
ity, the spectrum exhibits true and avoided level crossings as the
Hamiltonian parameters g and Δ vary. We can track the origin
of these crossings into an effective photonic parity selection rule
imposed by the light-matter interaction term in the total Hamil-
tonian [Eq. (11)], which reads Δn = ±1. For two near-degenerate
polariton levels Ej and Ek (k ≠ j), there will be a strong avoided
crossing between them only if the largest probability amplitudes
cνn of their wavefunctions |Ψj⟩ and |Ψk⟩ in the uncoupled basis
|ν⟩|n⟩ differ by one photon number [see Eq. (16)]. Otherwise, the
levels will cross as the Hamiltonian is varied through the degen-
eracy. We show this explicitly in Figs. 10 and 11, with examples
of avoided and true crossings, respectively, in the excited polariton
manifold.

In Fig. 10(a), we highlight an avoided crossing between excited
polaritons |Ψ6⟩ and |Ψ7⟩ near g/ω10 ≈ 0.05. Panels 10(b) and 10(c)
show that the largest wavefunction components to the left of the
avoided crossing are {|3⟩|0⟩, |2⟩|1⟩} for |Ψ6⟩ and {|1⟩|2⟩, |0⟩|3⟩
|2⟩|1⟩} for |Ψ7⟩, which indeed differ by one photon number. Past
the avoided crossing, the state |Ψ7⟩ dominantly acquires |3⟩|0⟩
character.

In Fig. 11(a), we highlight a level crossing at g/ω10 ≃ 0.03, where
the excited polariton states |Ψ27⟩ and |Ψ28⟩ undergo a true crossing.
Figure 11(b) shows that to the left of the crossing point, the largest
uncoupled components of |Ψ27⟩ are {|1⟩|5⟩, |0⟩|6⟩}, while for |Ψ28⟩
the largest components are {|7⟩|0⟩}. Since |Ψ27⟩ and |Ψ28⟩ thus pre-
dominantly satisfyΔn > 1, they do not interact via by the light-matter
term as g is varied across the degeneracy.

VII. CONCLUSION AND OUTLOOK
In order to understand the microscopic behavior of an indi-

vidual anharmonic molecular vibration coupled to a single infrared
cavity mode, we introduce and analyze the multilevel quantum
Rabi (MLQR) model of vibrational polaritons [Eq. (11)]. We
derive the model Hamiltonian starting from the exact anharmonic
solutions of a free-space Morse oscillator and treat light-matter
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interaction within the Power-Zineau-Woolley multipolar frame-
work,50 which includes the dipole self-energy. The model takes
into account counter-rotating terms in the light-matter coupling
and allows the analysis of vibrational polaritons both in Hilbert
space and nuclear coordinate space. Phase-space representations
of the photon state follow directly from the QED formulation of
the model.65 Such phase-space analysis would be closely related
to previous coordinate-only treatments of photon-nuclei cou-
pling,28,39,66 although a systematic comparison has yet to be done.

The model is consistent with previous work based on few-
level vibrational systems38 and therefore is also able to describe
the spectral features observed in linear and nonlinear transmis-
sion spectroscopy,26,41 which, due to the relatively weak intensi-
ties involved, can only probe up to the second excited polariton
triplet around E ≈ 2 ω10, where ω10 is the fundamental vibration
frequency. The system Hamiltonian allows the emergence of an
ensemble of avoided and true crossings as the Rabi frequency g
and cavity detuning Δ are tuned. The density of these level cross-
ings increases with energy. These crossings are governed by a pseu-
doparity selection rule in the photonic degree of freedom (details
in Sec. V).

The nuclear coordinate analysis of vibrational polaritons within
the MLQR model unveils a few general trends across the entire
energy spectrum. First, it is no longer possible to define a unique
bond dissociation energy in an infrared cavity as is commonly done
in free space. The dissociation energy depends on the quantum state
of the cavity field. Second, within any given energy range ΔE, it is
always possible to find a vibrational polariton eigenstate with small
mean photon number ⟨â†â⟩ and large mean bond distance ⟨q̂⟩, and
vice-versa. Third, the bond distance ⟨q̂⟩ of an arbitrary vibrational
polariton state with energy, Ej, never exceeds the bond length of a
free-space Morse eigenstate |ν⟩with similar energy (Eν ≈ Ej). In other
words, the formation of vibrational polaritons inside the cavity leads
to a type of bond-strengthening effect that may have consequences in
the reactivity of chemical bonds.

The multilevel quantum Rabi model developed here can be gen-
eralized to the many-molecule and multimode scenarios. Treating
the dissipative dynamics of vibrational polaritons due to cavity pho-
ton decay and vibrational relaxation is also straightforward within
a Markovian approach.67 The dynamics of vibrational polaritons in
the many-body regime has been previously discussed in Refs. 33 and
68, using truncated vibrational subspaces. The main qualitatively
new effect that the many-body system introduces to the problem
is the formation of collective molecular states that are not sym-
metric with respect to particle permutations. These so-called “dark
exciton states”69 arise naturally from state classification by permu-
tation symmetry in the Hilbert space of the Dicke model.70,71 It has
been shown originally within a quasiparticle approach for systems
with macroscopic translational invariance,72 and later using a cavity
QED approach,32,73,74 that totally symmetric and nonsymmetric col-
lective molecular states can strongly admix due to the ever-present
inhomogeneous broadening of molecular energy levels, by inhomo-
geneities in the light-matter interaction energy across the medium or
by any local coherent term such as intramolecular electron-vibration
coupling (in the case of electronic strong coupling74). For the case
of vibrational polaritons, the role of dark and quasidark collective
states in determining the rate of chemical reactions is yet to be fully
understood.

SUPPLEMENTARY MATERIAL

In the supplementary material, we show the dependence of the
energy spectrum, mean bond length, and mean photon number of
vibrational polaritons on the value of the anharmonicity parameter
χe with fixed dissociation energy De.
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