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ABSTRACT
Vibrational strong coupling has emerged as a promising route for manipulating the reactivity of molecules inside infrared cavities. We develop
a full-quantum methodology to study the unitary dynamics of a single anharmonic vibrational mode interacting with a quantized infrared
cavity field. By comparing multi-configurational time-dependent Hartree simulations for an intracavity Morse oscillator with an equivalent
formulation of the problem in Hilbert space, we describe for the first time the essential role of permanent dipole moments in the femtosecond
dynamics of vibrational polariton wavepackets. We classify molecules into three general families according to the shape of their electric dipole
function de(q) along the vibrational mode coordinate q. For polar species with a positive slope of the dipole function at equilibrium, an
initial diabatic light–matter product state without vibrational or cavity excitations evolves into a polariton wavepacket with a large number of
intracavity photons for interaction strengths at the conventional onset of ultrastrong coupling. This buildup of the cavity photon amplitude is
accompanied by an effective lengthening of the vibrational mode that is comparable with a laser-induced vibrational excitation in free space.
In contrast, polar molecules with a negative slope of the dipole function experience an effective mode shortening, under equivalent coupling
conditions. We validate our predictions using realistic ab initio ground state potentials and dipole functions for HF and CO2 molecules. We
also propose a non-adiabatic state preparation scheme to generate vibrational polaritons with molecules near infrared nanoantennas for the
spontaneous radiation of infrared quantum light.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0009869., s

I. INTRODUCTION

Recent experimental demonstrations of strong and ultrastrong
light–matter interaction with molecules and molecular materials
in infrared cavities1–18 have stimulated intense theoretical efforts
for understanding the microscopic properties of hybrid photon-
vibration states from a quantum mechanical perspective.19 Moti-
vated by pioneering measurements in liquid-phase Fabry–Perot
cavities,5,17,20 theoretical studies have suggested several potential
mechanisms that enable the modification of chemical reactivity in

the ground electronic state under conditions of vibrational strong
coupling.21–23 Another theoretical focus is the study of linear and
nonlinear spectroscopic signals of infrared cavities under strong
coupling.19,24–27

Vibrational polaritons are the hybrid light–matter states that
emerge in infrared cavities under strong coupling.28 Several mod-
els with varying degrees of complexity have been used to study
these systems. In one of the earliest approaches,29 molecular vibra-
tions were treated as two-level systems with an energy gap given by
the fundamental vibration frequency. The vibrational qubits were
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simultaneously coupled to a quantized harmonic oscillator describ-
ing a single-mode cavity field. This approach corresponds to
the Tavis–Cummings model of cavity quantum electrodynamics
(QED),30 which implies the rotating-wave approximation for light–
matter coupling. In Ref. 26, the authors went beyond the two-level
approximation and also treated intramolecular vibrations within an
electronic state as quantum harmonic oscillators. Light–matter cou-
pling was also extended to include the counter-rotating and self-
energy terms that are commonly taken into account under condi-
tions of ultrastrong coupling,31,32 broadly defined as the regime in
which the light–matter interaction energy is comparable with the
vibrational and cavity frequencies.

The anharmonicity of molecular vibrations was first taken into
account in Ref. 25, in an effort to model the pump–probe spec-
trum of strongly coupled infrared cavities.16 Here, the authors sup-
plemented the quantum harmonic oscillator picture with a weak
anharmonic energy correction. The latter is introduced to cap-
ture the spectral anharmonicity of real vibrations (e.g., energy
levels are not equally spaced). Later, in Ref. 27, this perturba-
tive approach was further extended to include the effect of elec-
trostatic anharmonicity (e.g., the dipole moment function is not
symmetric relative to displacements from equilibrium). In both
works, light–matter coupling was treated within the rotating-wave
approximation.

Perturbative anharmonicity models can describe the frequen-
cies and transition strengths of the fundamental (0 → 1) and over-
tone vibrational transitions (0→ ν) to excited states with a low vibra-
tional quantum number ν.33 Building on the intuition gained from
the study of vibrational ladder climbing in strong laser fields,34 one
expects that under conditions of strong coupling in a resonant cav-
ity, vibrational anharmonicity models should also properly describe
light-induced couplings among all the vibrational bound states in
the spectrum.

The first consistent approach that takes into account the entire
bound state spectrum and electric dipole function of an electronic
potential energy curve was developed in Ref. 19. The so-called multi-
level quantum Rabi (MLQR) model describes an individual anhar-
monic vibration in an infrared cavity. It can be derived from a mul-
tipolar formulation of light–matter interaction35 by projecting the
composite system Hamiltonian into a complete vibrational energy
basis. Given the electronic potential curve and electric dipole func-
tion, the MLQR model can be used to understand both material and
photonic properties of vibrational polaritons both in the strong and
ultrastrong coupling regimes.

In Ref. 19, only molecules without an electric dipole moment
at equilibrium were discussed. Moreover, only off-diagonal dipole
matrix elements in the vibrational energy basis (transition dipoles)
were taken into account in the light–matter interaction process.
We now significantly expand the MLQR model to include the con-
tribution of diagonal elements of the dipole matrix to the vibra-
tional basis (permanent dipoles) and compare the resulting polari-
ton physics of molecular vibrations that are polar at equilibrium
(e.g., CO) with those that are non-polar (NP) at equilbrium (e.g.,
CO2). We show that the extended MLQR model is equivalent to
a numerically exact36,37 formulation of the problem in the coor-
dinate representation. This equivalence has been widely ignored
in the vibrational polariton literature. We focus on the evolu-
tion of vibrational polariton wavepackets and the corresponding

dynamics of simple material and photonic observables of experi-
mental interest.

We perform a systematic comparison between polar and non-
polar molecules in infrared cavities, correlating the entire shape
of the electric dipole function along the nuclear coordinate with
the resulting vibrational polariton dynamics. Among other results,
we predict that for a specific class of polar molecules, the light–
matter system can evolve from a diabatic product state with a def-
inite number of vibrational and cavity excitations (possibly vac-
uum) into a polariton wavepacket with a mean intracavity photon
number that could be reliably measured using the current detector
technology.

We show that not only transition dipole moments between
vibrational levels are relevant for light–matter interaction inside
infrared cavities—as in free-space IR absorption spectroscopy—but
also vibrationally averaged permanent dipole moments. Although
permanent dipole moments do not change the vibrational state of
a molecule, they displace the cavity field from the vacuum state into
a polariton wavepacket with a finite number of photons over fem-
tosecond time scales. The displaced cavity field can then strongly
drive transitions between higher vibrational levels. This is analogous
to laser-induced vibrational ladder climbing,34 but the number of
photons involved is many orders of magnitude smaller.

In this article, we discuss the theoretical foundations of our
model (Sec. II) and the details of our methods (Sec. III). We then
describe the results obtained for the static and dynamical proper-
ties of vibrational polaritons that emerge under the various material
and photonic conditions considered (Sec. IV). We finally conclude
with a discussion of the fundamental physical principles that support
our computational results and propose a quantum state prepara-
tion method that could be used to test our predictions with infrared
nanoantennas (Sec. V).

II. THEORETICAL FRAMEWORK
A. System Hamiltonian

Following Refs. 36–38, we model an individual molecular vibra-
tion coupled to a single quantized electromagnetic mode in the
electric dipole approximation of light–matter interaction. In the
coordinate representation, the system Hamiltonian reads (in atomic
units)

Ĥ = (− 1
2μ

∂2

∂q2 + V(q))+(−1
2
∂2

∂x̂2 +
1
2
ω2

c x̂
2)+
√

2ωcE0x̂d̂(q). (1)

The terms in the first bracket describe the vibrational motion of
interest, characterized by a potential energy curve (PEC) V(q) along
a normal mode coordinate q with reduced mass μ. In this work, the
PEC is assumed to have a single equilibrium configuration at q =
qe and a well-defined dissociation energy in free space. This is the
typical behavior of stretching modes in diatomic and polyatomic
molecules.33

The second bracket in Eq. (1) describes the energy of a sin-
gle cavity field mode with frequency ωc and quadrature operator
x̂. The last term corresponds to light–matter interaction in a mul-
tipolar form,35 truncated to the electric dipole contribution. E0 is
the square-root amplitude of the vacuum fluctuations at ωc, and
d̂(q) is the electric dipole function along the vibrational coordinate.
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Quadrupole contributions to light–matter coupling are ignored
under the assumption that the electric field gradient is weak at the
location of the molecular dipole. This simplified description is not
expected to describe all cavity systems.39

The evolution of an arbitrary intracavity light–matter state
∣ψ(t)⟩ is obtained from Ĥ in Eq. (1) by solving i(d/dt)∣ψ(t)⟩
= Ĥ∣ψ(t)⟩ with a unitary propagator. As described in more details
below, we solve the Schrödinger equation by representing the sys-
tem wavefunction and the Hamiltonian both in the coordinate
and Hilbert space representations. In the coordinate representa-
tion, we discretize both Ĥ and ∣ψ(t)⟩ along both nuclear and cavity
coordinates (q, x) and propagate an initial state using the multi-
configurational time-dependent Hartree (MCTDH) method.40,41 In
the Hilbert space representation, time evolution is carried out by
projecting Eq. (1) into a set of energy eigenstates of the nuclear
potential V(q) to give

Ĥ′ = Π̂vib Ĥ Π̂†
vib, (2)

where Π̂vib = ∑νmax
ν=0 ∣ν⟩⟨ν∣ is a projector operator into the vibrational

energy basis ∣ν⟩, with ν being the vibrational quantum number. If the
energy basis set is complete, i.e., νmax =∞, then we have Ĥ′ ≡ Ĥ, and
evolving a system state in the coordinate or Hilbert space represen-
tation must give exactly equivalent results. In practice, the projection
operator Π̂vib can only reliably be truncated up to a cutoff energy by
setting νmax finite. We demonstrate below that despite this practical
limitation, it is possible to find a value of νmax that gives numeri-
cally equivalent results for the propagation of vibrational polariton
wavepackets in the coordinate and the Hilbert space representations.

We are interested in the individual roles of diagonal and off-
diagonal elements of the electric dipole matrix ⟨ν′∣d(q)∣ν⟩ in the
dynamics of vibrational polaritons. In order to have controllable
access to this information, we partition the vibrationally projected
Hamiltonian Ĥ′ in Eq. (2) as Ĥ′ = Ĥ1 + Ĥ2, where

Ĥ1 = ωcâ†â+∑
ν
ων∣ν⟩⟨ν∣+∑

ν
∑
ν′>ν

gν′ν(∣ν′⟩⟨ν∣+ ∣ν⟩⟨ν′∣)(â† + â) (3)

and

Ĥ2 =∑
ν
gν∣ν⟩⟨ν∣(â† + â), (4)

with summations over ν carried out up to νmax.
Ĥ1 in Eq. (3) corresponds to the multi-level quantum Rabi

model from Ref. 19. In this model, light–matter coupling parame-
ters are determined only by transition dipole moments through the
state-dependent Rabi frequencies,

gν′ν = E0⟨ν′∣d̂(q)∣ν⟩, (5)

for ν ≠ ν′. Cavity field variables are described in terms of cav-
ity annihilation operator â. For a two-level system, i.e., νmax = 1,
Eq. (3) reduces to the quantum Rabi model for a qubit in ultrastrong
coupling.42–44

Noting that the intracavity electric field Ê is proportional to
E0(â† + â),45 the term Ĥ2 in Eq. (4) can be interpreted as the con-
tribution to d ⋅E from the permanent dipole moment of each vibra-
tional level ν. The corresponding diagonal coupling strength is given
by

gν = E0⟨ν∣d̂(q)∣ν⟩. (6)

B. Nuclear potential and dipole function
The dependence on the vibrational quantum numbers of the

diagonal (gν) and off-diagonal (gν ′ ν) coupling parameters is directly
related to the potential energy curve V(q). Consider a potential that
has even parity relative to the equilibrium mode length qe, i.e., V(q)
is invariant under the transformation q → −q and qe = −qe. This is
the case for the harmonic potential V(q) = ω0(q − qe)2/2, whose
vibrational eigenstates are also eigenstates of parity.

Selection rules for electric dipole matrix elements can be
derived by expanding the dipole function d(q) near qe up to second
order as

d(q) ≈ de + c1(q − qe) + c2(q − qe)2, (7)

where de is the electric dipole moment at the equilibrium configu-
ration qe, c1 is proportional to the slope of the dipole function at
equilibrium, and c2 to its curvature. The absolute magnitudes |c1|
and |c2| can be inferred from the strengths of fundamental and over-
tone absorption peaks in stationary infrared spectroscopy.46 Since
the absorption line strengths are proportional to the square of the
transition dipole moments, the signs of the expansion parameters
in Eq. (7) are, therefore, not accessible in linear spectroscopy. For
harmonic oscillators, the dipole expansion in Eq. (7) gives the selec-
tion rules Δν = ±1, ±2 for transition dipole moments. Diagonal
elements (permanent dipoles) are only weakly dependent on the
vibrational quantum number ν through the quadratic term in the
expansion and are, thus, primarily given by ⟨ν∣d̂(q)∣ν⟩ ≈ de for
small ν.

For realistic anharmonic molecular vibrations, the nuclear
potential V(q) in general is not invariant under the transforma-
tion q → −q and qe → −qe. Anharmonic vibrational eigenstates ∣ν⟩,
thus, do not have a well-defined parity. This changes the structure
of the dipole matrix elements ⟨ν′∣d̂(q)∣ν⟩ in comparison with the
case of harmonic vibrations. In general, for anharmonic vibrations,
there are no selection rules for transition dipole moments, and per-
manent dipole moments have a stronger dependence on the vibra-
tional quantum number in comparison with harmonic vibrations.
This occurs because the contribution of the linear term in Eq. (7) is
not parity-forbidden, giving ⟨ν∣d̂(q)∣ν⟩ ≈ de + c1⟨ν∣(q − qe)∣ν⟩ for
small ν.

In this work, we consider the intracavity dynamics of an indi-
vidual anharmonic vibration described by the Morse potential,47

V(q) = De(1 − exp[−a(q − qe)])2, (8)

where De is the potential depth that defines the dissociation energy
and a is a parameter that contributes to the anharmonicity of the
cavity-free vibrational spectrum. The nuclear Schrödinger equation
with a Morse potential can be solved analytically in terms of associ-
ated Laguerre polynomials.46,47 By comparing the exact expression
for the vibrational energies Eν with the Dunham expansion,33 the
vibrational spectrum up to second order in ν can be written as

Eν ≈ −De + ω0(ν + 1/2) − ω0χe(ν + 1/2)2, (9)

where ω0 ≡ [h̵]a
√

2De/μ is the fundamental vibration frequency
in the harmonic approximation and χe ≡ [h̵2]a2/2μ is the spectral
anharmonicity parameter.
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C. Vibrational polariton wavepackets
Having defined a model for the nuclear potential and a

structure for the light–matter coupling Hamiltonian both in the
coordinate space [Eq. (1)] and Hilbert space [Eqs. (3) and (4)],
we compute the dynamics of selected intracavity light–matter
wavepackets. Vibrational wavepackets can in general be written
as

∣ψ(t)⟩ =∑
ν
∑
nc
βν nc(t)∣ν⟩∣nc⟩, (10)

where βν nc(t) are time-dependent wavepacket coefficients in the
diabatic product basis ∣ν⟩∣nc⟩, where ∣nc⟩ is an eigenstate of the
photon number operator â†â with eigenvalue nc (Fock state). The
coordinate-space analog of Eq. (10) can also be defined.

In order to gain physical intuition about the fate of the nuclear
motion and the cavity field under conditions of strong and ultra-
strong light–matter coupling, we focus on the short-time dynamics
of the mean mode length ⟨ψ(t)∣q̂∣ψ(t)⟩ and the mean intracavity
photon number ⟨ψ(t)|â†â|ψ(t)⟩ as functions of the light–matter cou-
pling strength and the shape of the dipole function d(q). We devote
special attention to the latter, as one would expect that for strong
enough light–matter interaction, the spectral observables should
depend not only on the magnitudes of the dipole expansion param-
eters in Eq. (7)—as is the case in cavity-free infrared absorption
spectroscopy—but also on their signs.

Radiative and non-radiative dissipative processes are not taken
into account in this work. Therefore, our results can only accurately
describe the unitary dynamics of vibrational polariton wavepackets
over sub-picosecond time scales, before dissipative effects become
relevant.13

III. METHODS
A. Morse and dipole function parameters

We consider a model anharmonic oscillator described by a
Morse potential [Eq. (8)] with parameters in atomic units given by
De = 0.23 a.u., qe = 4.0 a.u., and α = 1.4465 a.u. The reduced mass of
the vibrational mode is μ = 1.43764 amu. The same Morse potential
V(q) is used for the system Hamiltonian represented in coordinate
space and Hilbert space. For our chosen parameters, the poten-
tial has 24 vibrational bound states, and the fundamental vibration
period is 2π/ω10 = 8.27 fs, where ω10 is the frequency of the 0 → 1
transition. The first five Morse levels and eigenfunctions are shown
in Fig. 1.

We numerically compute the vibrational energiesων and eigen-
states ∣ν⟩ of the potential using a discrete variable representation
(DVR) method with a uniform grid and Fourier basis functions.48

We use up to Nq = 721 grid points over the interval 2.5 < q
< 20.5 (a.u.) along the nuclear coordinate. We can construct a
quasi-complete nuclear basis ∣ν⟩ with up to νmax ∼ 700, includ-
ing states above the dissociation threshold. However, in most static
and dynamical calculations considered, converged results can be
obtained with νmax ∼ 20–80, depending on the coupling strength and
molecular species.

For the definition of the electric dipole function along the
nuclear coordinate, we follow Ref. 19 and consider the universal

FIG. 1. Lowest vibrational levels and eigenstates of a Morse potential with param-
eters De = 0.23 a.u., qe = 4.0 a.u., a = 1.4465 a.u., and μ = 1.43 amu. ν is the
vibrational quantum number and qe is the equilibrium bond length.

model,

d(q) = d0(q − c0)e−(q−q0)2/2σ2

, (11)

where the set of parameters (d0, c0, q0, σ) can be chosen such that
d(q) can equally well describe the qualitative behavior of IR-active
molecular species that are polar or non-polar at equilibrium. We
use this to compare three main types of molecular species accord-
ing to the form of their dipole function d(q): non-polar molecules
for which d(qe) = 0 (e.g., iron pentacarbonyl), polar molecules with
|d(qe)| > 0 and (d/dq)[d(q)]∣qe > 0 (e.g., hydrogen fluoride), and
finally polar molecules with |d(qe)| > 0 and (d/dq)[d(q)]∣qe < 0 (e.g.,
sodium nitroprusside). In what follows, we, respectively, denote
these cases as non-polar (NP), polar-right (PR), and polar-left (PL).
The set of model function parameters used in this work is given in
Table I (in atomic units). In the last row, we also include the value of
the transition dipole moment d10 = ⟨1∣d(q)∣0⟩.

In Fig. 2, we plot the dipole functions d(q), permanent dipole
moments dν and transition dipole moments dν0 for the first 20
bound states of each of the three types of molecular species param-
eterized in Table I. The squares of the transition dipoles dν0 are
proportional to the oscillator strength of the vibrational transition
0→ ν in linear infrared absorption. The three model functions qual-
itatively reproduce the typical behavior in infrared absorption spec-
troscopy, with a strong fundamental peak (0→ 1) and weaker over-
tones (0 → 2, 3, . . .). The permanent dipole moments also behave

TABLE I. Dipole moment function parameters (in atomic units) for polar-left (PL),
polar-right (PR), and non-polar (NP) molecular species. The 0 → 1 transition dipole
moment (d10) is also given.

dPL(q) dPR(q) dNP(q)

c0 1.8 2.7 4.0
q0 3.6 4.5 4.0
σ 0.3 0.584 0.6
d0 1.0 1.0 2.0
d10 −0.32 0.20 0.19
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FIG. 2. Dipolar properties of molec-
ular vibrations. (Left panels) Dipole
moment function d(q) (in atomic units) for
molecules that are polar and non-polar at
equilibrium. (Right panels) Vibrationally
averaged permanent dipole moments
⟨ν∣d(q)∣ν⟩ (left axes) and transition
dipole moments ∣⟨ν∣d(q)∣ν′⟩∣ for 0 − ν
transitions (right axes). In all panels,
the Morse potential parameters used are
De = 0.23 a.u., qe = 4.0 a.u., a = 1.4465
a.u., and μ = 1.43 amu.

as expected, with their magnitude decreasing rapidly with ν near the
dissociation threshold.

B. Cavity field parameters
In all our calculations, the cavity frequency ωc is set to be on

exact resonance with the fundamental vibrational frequency ω10.
The vacuum field amplitude E0 is considered as a tunable param-
eter, simulating the fact that in real cavities, the magnitude of the
light–matter coupling strength can be tuned by changing the intra-
cavity molecular density, for fixed cavity geometry and material
composition.4 For consistency between our coordinate-space and
Hilbert space calculations, throughout this work, we parameterize
the light–matter coupling strength by the dimensionless quantity

λg ≡
⟨1∣d̂(q)∣0⟩

ωc
E0. (12)

This parameter corresponds to the light–matter coupling ratio g/ωc
used in the ultrastrong coupling literature,31,32 if we define d10E0 ≡ g.

The dimensionality of the cavity Hilbert space is set to ensure
convergence of static and dynamical calculations. For the values
of λg considered in this work, converged results were obtained by
including Fock states ∣nc⟩ with up to nc ∼ 80 photons. Conver-
gence of the calculations in the coordinate-space representation is
discussed below.

C. Polariton wavepacket propagation
We are interested in the dynamics of expectation values of

the form ⟨ψ(t)|Ô|ψ(t)⟩, where Ô is any molecular or photonic

observable of experimental interest such as the photon num-
ber operator (â†â) and the mode distance operator (q̂). The sys-
tem state ∣ψ(t)⟩ is obtained by propagating numerically an ini-
tial light–matter wavepacket ∣ψ0⟩ with a unitary propagator Û(t),
i.e., ∣ψ(t)⟩ = Û(t)∣ψ0⟩. The propagator and the wavefunction can
be accurately represented in the coordinate-space representation
using the MCTDH method and also in Hilbert space by project-
ing the total Hamiltonian into a vibrational and photonic product
basis. Since MCTDH results are numerically exact, they serve as a
benchmark. However, it is not clear how to distinguish the roles
of vibrationally averaged permanent dipole moments from tran-
sition dipoles in the light–matter dynamics using the coordinate-
space picture. This is straightforward to do in the Hilbert space
representation.

1. Eigenphase evolution in Hilbert space
State evolution in Hilbert space is carried out by projecting the

time-evolution operator Û(t) = exp[−iĤ′t] into a truncated energy
basis of the system Hamiltonian Ĥ′. For calculations that only take
into account the contribution of transition dipole moments to the
light–matter interaction, we set Ĥ2 = 0 [Eq. (4)]. Energy eigenstates
∣ϵj⟩ satisfy Ĥ′∣ϵj⟩ = ϵj∣ϵj⟩, where j labels discrete and quasi-discrete
polariton energy levels. Physically, energy eigenstates correspond to
anharmonic vibrational polaritons.19

We project an arbitrary initial light–matter state into the polari-
ton basis to read ∣ψ0⟩ = ∑j⟨ϵj∣ψ0⟩∣ϵj⟩. In this basis, polariton
wavepackets undergo a trivial phase evolution of the form

∣ψ(t)⟩ =
jmax

∑
j=0
⟨ϵj∣ψ0⟩∣ϵj⟩ e−iϵjt , (13)
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where the summation over the discrete label j includes the abso-
lute ground state (j = 0) and runs up to a spectral cutoff (j = jmax).
The latter is chosen such that observables ⟨Ô(t)⟩ are simultaneously
converged over the entire evolution time. In this approach, conver-
gence of the polariton spectrum is essential for computing accurate
wavepacket dynamics.

2. MCTDH evolution in coordinate space
In the coordinate-space representation, the system Hamilto-

nian in Eq. (1) is assumed to describe a two-dimensional poten-
tial energy surface (2D-PES) with respect to nuclear and pho-
tonic coordinates, together with the corresponding kinetic energy
terms.36,38,49,50 The light–matter interaction term proportional to
x × d(q) is regarded as non-adiabatic coupling between the anhar-
monic nuclear potential V(q) and the harmonic cavity potential
V(x) ≡ ω2

cx2/2.
In this 2D-PES representation, the evolution of an arbi-

trary light–matter wavepacket ψ0(x, q) is accurately computed
using the multi-configurational time-dependent Hartree method
(MCTDH),40,51 as implemented in Ref. 41. By projecting a
wavepacket ψ(x, q, t) into the polariton eigenbasis, static properties
such as the polariton spectrum (ϵj) can also be obtained.

Static and dynamic calculations are carried out using DVR with
a sine primitive basis for the molecular coordinate q, in a grid of
Nq = 721 points in the range 2.5 ≤ q ≤ 20.5 a.u. For the photonic
coordinate x, we use harmonic oscillator primitive basis functions
on a dimensionless DVR grid within the range −90 ≤ x ≤ 90. The
number of photonic grid points Nx is chosen such that all the Fock
states needed for convergence can be properly described.

Technical details of the MCTDH method are given in
Ref. 40. Briefly, the time-dependent Schrödinger equation is solved
by introducing the ansatz,

ψ(q, x, t) =
nq

∑
jq=1

nx
∑
jx=1

Ajq ,jx(t)ϕjq(q, t)ϕjx(x, t), (14)

which is an expansion of the system state into a time-varying dia-
batic product basis composed of the function ϕjq(q, t) in the nuclear
coordinate and ϕjx(x, t) in the photonic coordinate, each labeled by

the integers jq and jx, respectively. We set the number of basis func-
tions in the expansion to nq = nx = 30. The equations of motion for
the coefficients Ajq ,jx(t) and the basis functions on the correspond-
ing 2D product grid are obtained using an open-source MCTDH
package41 and then solved using a numerical integrator. The evolu-
tion of system observables ⟨ψ(x, q, t)|Ô(x, q)|ψ(x, q, t)⟩ is obtained
by numerically evaluating the corresponding integrals on the (x,
q)-grid.

For static calculations (e.g., polariton spectrum), we use a rou-
tine in the MCTDH package that diagonalizes the Hamiltonian
matrix on the 2D grid using the Lanczos algorithm.52 The dimen-
sionality of the Hamiltonian matrix is NqNx, where Nq and Nx
are the number of grid points in the nuclear and photonic coordi-
nates, respectively. In the Lanczos method, the eigenvalue problem is
transformed into an iterative eigendecomposition. After the number
of iterations is set, a defined number of eigenvalues M are computed,
with M < NqNx.

IV. RESULTS
A. Static properties of vibrational polaritons

Our first goal is to compare the static properties of intracavity
vibrational polaritons that emerge under strong light–matter cou-
pling for molecular species that are either polar or non-polar at
equilibrium (see the definition in Table I). This comparison is best
carried out in the Hilbert space representation because we can con-
trollably neglect the contribution of permanent dipole moments to
the light–matter interaction, by setting Ĥ2 = 0 in Eq. (4).

In Fig. 3(a), we plot the polariton spectrum as a function of
the dimensionless light–matter coupling strength λg , for a non-polar
molecule treated in two alternative ways: (i) both transition and per-
manent dipole moments in the vibrational eigenbasis are taken into
account (solid curves); (ii) only transition dipoles are considered
(dashed curves). For a given value of λg , energies are shown relative
to the energy of the absolute ground state (EGS). The ground level in
general exhibits a red shift relative to its energy at λg = 0 (not shown).
For λg ≲ 0.1, the lowest excited polariton manifold exhibits the usual
polariton doublet. The second excited manifold has a well-defined
triplet structure. At larger coupling strengths λg > 0.1, the spectrum

FIG. 3. Static vibrational polariton properties for non-polar molecules. Polariton spectrum and selected observables as functions of the dimensionless coupling strength
λg, for a non-polar Morse oscillator at equilibrium, in a cavity resonant with the fundamental vibration frequency ω10. In all panels, solid lines are obtained by including
transition and permanent dipoles in the Hamiltonian and dashed lines by considering transition dipoles only. (a) Polariton energies relative to the ground state energy (EGS),
in units of ω10. (b) Mean bond distance ⟨q̂⟩ for the polariton ground state, in units of equilibrium length qe. The value for the ν = 0 vibrational state is shown for comparison.
(c) Mean cavity photon number ⟨â†â⟩ for the polariton ground state, in logarithmic scale.

J. Chem. Phys. 152, 234111 (2020); doi: 10.1063/5.0009869 152, 234111-6

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

develops into several real and avoided crossings between excited
polariton levels.19 If we consider only the contribution of transi-
tion dipole moments to the Hamiltonian, the low-energy excitation
spectrum remains mostly unaltered in comparison with the spec-
trum of the full Hamiltonian for a wide range of coupling strengths.
However, for higher coupling strengths λg ≳ 0.3, ignoring the per-
manent dipole moments results in a qualitatively different polariton
spectrum.

In Figs. 3(b) and 3(c), we show the mean bond distance ⟨q̂⟩ and
mean intracavity photon number ⟨â†â⟩, respectively, for the polari-
ton ground state. The model predicts that at moderate values of
λg ∼ 0.1, the ground state behaves qualitatively different from the
cavity-free diabatic ground state ∣ν = 0⟩∣nc = 0⟩.

Figure 3(b) shows that the mean bond distance can be signif-
icantly higher in the polariton ground state (solid line) than the
bond distance of the bare ν = 0 vibrational level in free space. This
type of mode lengthening effect is not captured when only transi-
tion dipole moments are taken into account in light–matter interac-
tion. By ignoring the permanent dipole moments of the vibrational
states, the ground state is seen to experience bond shortening instead
(dashed line). This is consistent with the results obtained in Ref. 19,
which neglect state-dependent permanent dipoles.

Figure 3(c) shows that the polariton ground state is composed
of Fock states with nc ≥ 1 photons, even for coupling strengths as
low as λg ∼ 0.01. Photon buildup in the ground state is a conven-
tional signature of the ultrastrong coupling regime,31,32 for two-level
quantum emitters (qubits). This unexpected behavior of molecular
vibrations is largely insensitive to the inclusion or neglect of per-
manent dipole moments in the system Hamiltonian, for non-polar
species. However, we show below how this relative insensitivity does
not hold for vibrational modes that are polar at equilibrium.

In Fig. 4, we show the polariton spectrum and ground state
properties as functions of the coupling strength λg , for nuclear
modes that are polar at equilibrium. For concreteness, we consider
the polar-right electric dipole function in Table I. In general, the
results are more sensitive to the presence or absence of permanent
dipole moments in the Hamiltonian than for the case of non-polar
molecules. For instance, Fig. 4(a) shows that the exact polariton
energies in the first and second excited manifolds (solid lines) differ
by a few percent from the energies obtained by neglecting permanent

dipole moments (dashed lines). The difference is more pronounced
for λg > 0.1.

Figure 4(b) shows that the mode lengthening effect predicted
earlier for non-polar molecules (Fig. 3) is stronger in the polariton
ground state of polar molecular species (solid line). Again, ignor-
ing permanent dipole moments gives qualitatively different results
(dashed line).

Figure 4(c) shows that for polar vibrations, the cavity field can
build up a significant amount of photons in the polariton ground
state, reaching up to ⟨â†â⟩ ∼ 10 for λg ∼ 0.4 (solid line). We find
this prediction to be sensitive to the presence or absence of per-
manent dipole moments in the Hamiltonian. Considering only the
contribution of transition dipole moments to the light–matter inter-
action gives photon numbers that are consistently lower by about
two orders of magnitude relative to the full dipole matrix results,
over the entire range of coupling strengths (dashed line). This
should be compared with Fig. 3(c), where only small differences are
found.

B. Sub-picosecond polariton dynamics
Let us now consider the short-time unitary dynamics of the

molecular and photon observables ⟨q̂⟩ and ⟨â†â⟩, for a molecule-
cavity system initially prepared in a general state of the form

∣ψ0⟩ =∑
ν
∑
nc
βν nc ∣ν⟩∣nc⟩, (15)

where βν nc are complex wavepacket coefficients in the diabatic basis
∣ν⟩∣nc⟩. Transforming Eq. (15) into the coordinate-space represen-
tation preserves the values of βν nc . This initial state can be propa-
gated either in Hilbert space or in coordinate space as described in
Sec. III C.

1. Non-polar molecular vibrations
We first consider an initial condition that describes a system in

which an individual molecular vibration in its ground level (ν = 0)
is embedded at t = 0 into a cavity that was previously prepared in a
coherent state (e.g., via laser pumping). The molecular vibration is
assumed to be non-polar at equilibrium (see Table I), and the cavity

FIG. 4. Static vibrational polariton properties for polar molecules. Polariton spectrum and selected observables as functions of the dimensionless coupling strength λg,
for a polar-right Morse oscillator at equilibrium, in a cavity resonant with the fundamental vibration frequency ω10. In all panels, the solid lines are obtained by including
transition and permanent dipoles in the Hamiltonian and the dashed lines by considering transition dipoles only. (a) Polariton energies relative to the ground state energy
(EGS), in units of ω10. (b) Mean bond distance ⟨q̂⟩ for the polariton ground state, in units of equilibrium length qe. The value for the ν = 0 vibrational state is shown for
comparison. (c) Mean cavity photon number ⟨â†â⟩ for the polariton ground state, in logarithmic scale.
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initially has |α|2 = 2 photons on average, where α is a real coherent
state amplitude. We set λg = 0.125.

Physical intuition suggests that the ground state molecule
should interact with the finite cavity field and become vibrationally
excited by absorbing cavity photons. This intuitive picture is, indeed,
reproduced by converged MCTDH calculations in Fig. 5. Over the
first 150 fs, the molecule is seen to increase its mode length from the
bare value at ν = 0 to the value for ν = 1, by absorbing a single cavity
photon on average.

The behavior over larger time scales (∼102 fs) replicates at much
shorter time scales on the order of the vibrational period (2π/ω10
= 8.27 fs). In the first 40 fs, nuclear oscillations resulting in an
overall mode lengthening [Fig. 5(a)] are accompanied by a stepwise
decrease in the cavity photon number [Fig. 5(b)]. The partial recur-
rence of the photon number toward its initial value in turn results
in the overall shortening of the vibrational mode. This qualitative
behavior tends to repeat in cycles, but the amplitudes of the oscil-
lations in the nuclear and photonic observables become reduced at
later times.

Figure 5 also shows that the evolution of polariton observables
using the Hilbert space approach gives results that are indistinguish-
able from those obtained using the MCTDH method, as long as the
entire dipole matrix is used, i.e., both transition dipoles and perma-
nent dipoles contribute to light–matter coupling. Small deviations

FIG. 5. Polariton wavepacket evolution for non-polar molecular vibrations. (a)
Mean mode length ⟨q̂⟩ as a function of time. As a reference, horizontal lines show
the static values of the ν = 0 and ν = 1 vibrational levels outside the cavity. (b) Mean
intracavity photon number ⟨â†â⟩. Results are shown as obtained with the MCTDH
method (solid lines), the Hilbert space method with the full dipole matrix (crosses),
and the Hilbert space method without diagonal (permanent) dipole matrix ele-
ments (dashed). In both panels, the molecular vibration is set to be initially in its
ν = 0 vibrational level and the cavity in a coherent state with |α|2 = 2 photons. The
cavity frequency is resonant with the fundamental vibrational frequency ω10, and
the light–matter coupling strength is λg = 0.125.

from the exact MCTDH evolution are found when we neglect the
permanent dipole moments [Fig. 5(b)].

2. Polar molecular vibrations
We now consider the polariton dynamics of polar molecules,

specifically polar-right species (see Table I). We again consider the
vibration initially in ν = 0 and the cavity field in a coherent state
with a real amplitude α =

√
2. Figure 6 shows the resulting evolu-

tion of the mean mode length and the intracavity photon number.
The coupling strength λg is the same as that in Fig. 5. The results
suggest that the intuitive physical picture of a vibrational mode
overall being excited by absorbing a cavity photon is not universal.
For polar species, MCTDH calculations predict an overall increase
in both the mean mode length and cavity photon number over a
few hundred femtoseconds, as the result of light–matter coupling
(solid lines). Quantitatively equivalent results are obtained by com-
puting the dynamics in Hilbert space with both diagonal and off-
diagonal dipole matrix elements taken into account (crosses). If we
ignore the contribution of permanent dipoles to the Hamiltonian,
we obtain qualitatively different results (dashed lines). Specifically,
both the mean photon number and mode length are consistently
underestimated if permanent dipoles are neglected.

FIG. 6. Polariton wavepacket evolution for polar molecular vibrations. (a)
Mean mode length ⟨q̂⟩ as a function of time, for a polar-right vibration. Horizontal
lines correspond to the mode lengths of the ν = 0 and ν = 3 vibrational levels out-
side the cavity. (b) Mean intracavity photon number ⟨â†â⟩. Results are shown as
obtained with the MCTDH method (solid lines), the Hilbert space method with the
full dipole matrix (crosses), and the Hilbert space method without diagonal (perma-
nent) dipole matrix elements (dashed). In both panels, the molecular vibration is
set to be initially in its ν = 0 vibrational level and the cavity in a coherent state with
|α|2 = 2 photons. The cavity frequency is resonant with the fundamental vibrational
frequency ω10, and the light–matter coupling strength is λg = 0.125.
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Figure 6(a) shows that the mean mode length behaves qualita-
tively similar to the case of non-polar molecules, i.e., the molecule
experiences an overall mode lengthening in comparison with its ini-
tial ν = 0 configuration. However, for a polar molecule, the mode
is lengthened by a greater extent at equal coupling strength. In
Fig. 6(a), the mode length reaches a quasi-steady value that is com-
parable with the length of a bare Morse vibrational state with ν = 3
vibrational quanta.

Figure 6(b) shows that over short time scales on the order of
the bare vibrational period (8.27 fs), the system exhibits alternating
patterns of mode lengthening at the expense of photon absorption
and mode shortening accompanied by re-emission of photons into
the cavity field. These cycles were also found to occur for non-polar
species (Fig. 5). However, for polar vibrations, we predict a qualita-
tively new physical behavior: The light–matter system rapidly devel-
ops a sizable number of cavity photons over the first few vibrational
periods. In less than 5 fs, the cavity field amplitude rapidly evolves to
a state with about ⟨â†â⟩ ≈ 6.3 photons. Subsequent evolution of the
photon number occurs in cycles of decreasing amplitude over the
first hundred femtoseconds.

C. Non-classical intracavity initial conditions
Coherent states are known to have classical field statistics.53 Let

us now consider a qualitatively different scenario in which the cavity
field is initially prepared in a state with no classical analog. We are
interested in the differences that can be expected in the dynamics
of vibrational polaritons that evolve from a field state with quantum
statistics (e.g., Fock state), relative to the dynamics of a cavity initially
in a coherent state (Figs. 5 and 6). If differences are found, we want
to understand the role of bond polarity in distinguishing these two
scenarios.

We first consider a light–matter system in which a polar molec-
ular vibration is prepared in its ν = 0 level and then suddenly embed-
ded into a cavity with no photons (vacuum). The initial state in the
diabatic basis is simply

∣ψ0⟩ ≡ ∣ν = 0⟩∣nc = 0⟩. (16)

In Fig. 7(a), we show the evolution of the mean intracavity photon
number starting from this initial state, for a polar-right molecular
vibration (see Table I). The coupling parameter is λg = 0.25. Numer-
ically exact MCTDH results show that starting from the diabatic
vacuum at t = 0, the cavity field develops a significant amplitude over
the first few femtoseconds, with the photon number reaching up to
⟨â†â⟩ ≈ 7.3 in 5 fs (solid line). The polariton wavepacket then evolves
into a state with a photon number that undergoes moderate fluctu-
ations about a relatively large number (e.g., ⟨â†â⟩ ≈ 4.6 in 300 fs).
Calculations performed with the Hilbert space approach taking into
account both transition and permanent dipole moments (crosses)
give results that are equivalent to those obtained with MCTDH.
However, when we ignore the contribution of permanent dipole
moments to the light–matter interaction (dashed line), the results
consistently underestimate the intracavity photon number by at least
two orders of magnitude.

For comparison purposes, in Fig. 7(b), we show the evolution of
photon number for a molecule in an initial vibrational wavepacket
placed in the diabatic cavity vacuum, i.e., ∣ψ0⟩ = (∑ν cν∣ν⟩)⊗∣nc = 0⟩.
The vibrational wavepacket has a mean vibrational energy of

FIG. 7. Polariton evolution for polar vibrations in a vacuum field. Mean pho-
ton number ⟨â†â⟩ as a function of time, for a polar-right molecular species, for
two initial molecular conditions: (a) vibrational ground state ∣ν = 0⟩. (b) Vibrational
wavepacket ∣ψv⟩ = ∑ν cν∣ν⟩, with the vibrational distribution |cν|2 shown in the
inset. Results are shown as obtained with the MCTDH method (solid line), the
Hilbert space method with the full dipole matrix (crosses), and the Hilbert space
method without diagonal (permanent) dipole matrix elements (dashed line). In both
panels, the cavity is initially in the vacuum state ∣nc = 0⟩. The cavity frequency
is resonant with the fundamental vibrational frequency ω10, and the light–matter
coupling strength is λg = 0.25.

Ēvib = 2.126ω10 and is initialized at equilibrium (⟨q⟩0 = qe) with
a positive mean velocity. The overall photon number evolution is
found to be similar to Fig. 7(a), which suggests that cavity photon
generation is more related to the structure of the light–matter cou-
pling Hamiltonian than the initial degree of molecular excitation.

We perform simulations for non-polar molecules, also initial-
ized in the diabatic ground state ∣ν = 0⟩∣nc = 0⟩ (not shown). For the
same light–matter coupling parameters as those in Fig. 7, we find
that for this class of molecule, the mean mode length does not signif-
icantly vary in comparison with free space, and the average number
of cavity photons that can be produced remains at least two orders
of magnitude smaller than the case of polar molecules, even after
several hundred femtoseconds.

D. Role of the slope of the dipole function
We have established that the sub-picosecond dynamics of

vibrational polaritons formed with polar vibrations is qualitatively
different from the evolution of polaritons formed by vibrations that
are non-polar at equilibrium. We now discuss what appears to be
an unexpected feature of vibrational polaritons for polar molecules:
not only the value of the dipole moment at equilibrium is relevant
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FIG. 8. Polariton evolution for polar vibrations with different dipole function
slopes at equilibrium. (a) Mean mode length ⟨q̂⟩ as a function of time, for a
polar-right vibration (blue line) and polar-left vibration (red line). Horizontal lines
correspond to the mode lengths of the ν = 0 and ν = 8 vibrational levels outside the
cavity. (b) Mean intracavity photon number ⟨â†â⟩. In both panels, the molecular
vibration is set to be initially in its ν = 0 vibrational level and the cavity in a coherent
state with |α|2 = 2 photons. Results are obtained with the MCTDH method. The
cavity frequency is resonant with the fundamental vibrational frequency ω10, and
the light–matter coupling strength is λg = 0.25.

to determine the dynamics of vibrational polaritons but also equally
important is the sign of the slope of the electric dipole function.

We support this conjecture by comparing the dynamics of
polariton observables for polar-right and polar-left vibrational
modes (see definitions in Table I). In our Morse oscillator model, the
transition dipole moments (dν ′ ν) of polar-left and polar-right vibra-
tions have the same qualitative structure as a function of the vibra-
tional quantum number ν (see Fig. 2), but their permanent dipole

moments (dν) behave qualitatively different. dν decreases mono-
tonically with ν for polar-left vibrations. For polar-right species, dν
increases with ν for low quantum numbers, then decays to small val-
ues for higher vibrational levels. In other words, the slope Δdν/Δν
has opposite signs at low ν, for our two types of polar vibrations.

In Fig. 8, we correlate the sign of Δdν/Δν for polar-left and
polar-right species, with the evolution of the mean mode length and
intracavity photon number under strong coupling. The polariton
dynamics is computed with the MCTDH method. We consider the
same initial condition as that in Fig. 6, i.e., molecules are initially in
their ground vibrational level and the cavity is in a coherent state
with two photons on average.

Figure 8(a) shows that starting from the same initial condition,
polar-right vibrations experience an overall increase in the mode
length over the first few hundred femtoseconds and polar-left species
undergo an effective compression of their mode length over the same
time interval. For the coupling strength λg = 0.25, the mode length
of a polar-right molecule increases to a value comparable with a
ν = 8 vibrational eigenstate. On the contrary, a polar-left vibrational
mode can only transiently exceed the initial mode length of the
ν = 0 vibrational level.

Figure 8(b) in turn shows that the lengthening of the vibra-
tional mode for a polar-right species is accompanied by a significant
increase in the intracavity photon number. For the parameters con-
sidered, the cavity evolves from the vacuum state into a polariton
wavepacket with ⟨â†â⟩ ≈ 7.0 in about 300 fs. In contrast, for polar-
left species, the cavity on average gives away about one photon into
the material system.

E. Real case examples: CO2 and HF molecules
Until now, we have discussed the dynamics of idealized Morse

vibrations under strong light–matter coupling. Although Morse
oscillators are good approximations to the stretching modes of many
molecular species, we have yet to show that the light–matter physics
predicted above is also relevant for real molecules.

In order to prove this, let us first consider the polariton dynam-
ics of an individual hydrogen fluoride (HF) molecule in an infrared
cavity resonant with its fundamental frequency (ν̃10 = 3990 cm−1,
2π/ω10 = 8.36 fs). In Fig. 9(a), we plot the ab initio potential
energy curve V(q) and electric dipole function d(q) for the ground
electronic state (X1Σ+). These were obtained using the electronic

FIG. 9. Vibrational polariton evolution for the asymmetric stretching mode of hydrogen fluoride (HF). (a) ab initio potential energy curve along the vibrational coordinate.
The inset shows the corresponding electric dipole function around the equilibrium configuration qe. (b) Fractional bond displacement from equilibrium as a function of time.
(c) Mean intracavity photon number. The molecule is initially in the vibrational ground state, and the cavity is in the vacuum state. The cavity frequency is resonant with the
fundamental vibrational frequency ω10, and the light–matter coupling strength is λg = 0.1.
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FIG. 10. Vibrational polariton evolution for the asymmetric stretching mode of carbon dioxide (CO2). (a) ab initio potential energy curve along the vibrational coordinate
near the equilibrium configuration qe. The inset shows the corresponding electric dipole function. (b) Fractional bond displacement from equilibrium as a function of time.
(c) Mean intracavity photon number. The molecule is initially in the vibrational ground state, and the cavity is in the vacuum state. The cavity frequency is resonant with the
fundamental vibrational frequency ω10, and the light–matter coupling strength is λg = 0.1.

structure package MOLPRO. In both cases, a complete active space
(CAS) calculation of the lowest electronic state has been per-
formed using a multi-configurational self-consistent field (MCSCF)
method, then followed by the multireference configuration interac-
tion (MRCI) method, using Dunning’s correlation consistent basis
set with diffuse functions aug-cc-pVQZ. According to our nomen-
clature, HF belongs to the polar-right class of molecules.

In Fig. 9, we show the evolution of the mean mode length ⟨q̂⟩
and the intracavity photon number ⟨â†â⟩, for a vibrational polariton
wavepacket that evolves from an HF molecule initially prepared in
its ground vibrational level (ν = 0) with a cavity in a vacuum Fock
state (nc = 0). The results show that the molecule experiences an
overall increase in its mode length of about 10% in 300 fs, accompa-
nied by a significant buildup of intracavity photons. This behavior is
consistent with the Morse model calculations in Fig. 8.

As another example, let us consider the dynamics of an indi-
vidual carbon dioxide molecule (CO2) in an infrared cavity resonant
with the asymmetric stretching mode (ν̃10 = 3860.7 cm−1, 2π/ω10
= 8.64 fs). This vibrational mode is not polar at equilibrium but
acquires a dipole moment away from it. Therefore, the molecule
belongs to the non-polar class. In Fig. 10(a), we plot the ab initio
ground state potential energy curve (1A′ state) and electric dipole
function near equilibrium along the asymmetric stretching mode.
These were obtained using the same ab initio method used for HF
(MCSCF/aug-cc-pVQZ).

In Fig. 10, we show the evolution of the polariton mode length
and photon number, over the first few hundred femtoseconds. The
polariton wavepacket is also assumed to evolve from a vibrationless
molecule in a vacuum Fock state. Unlike the cases considered in pre-
vious sections, the mode length in CO2 is found to remain invariant
at its bare equilibrium value throughout the evolution of the polari-
ton state, which we attribute to the negligible anharmonicity of the
potential energy curve. In contrast, the intracavity photon number
does vary significantly from its initial value zero, rapidly reaching
up to ⟨â†â⟩ ∼ 10−3 after a few vibrational periods, from where it
undergoes quasi-stationary oscillations.

V. DISCUSSION AND OUTLOOK
We have shown that the resonant interaction of an individ-

ual molecular vibration with a quantized cavity field can have very

different physical observable consequences depending on the dipo-
lar properties of the molecular electron density. This is not com-
pletely unexpected if we recall that the oscillator strength Sν ′ν
of the infrared absorption band for a vibrational transition ν
→ ν′ is proportional to the square of the slope of the electric
dipole function de(q) at the equilibrium configuration.33 How-
ever, our results show that under conditions of strong and ultra-
strong light–matter coupling, not only the slope magnitude but
also the entire shape of the electric dipole function are impor-
tant to understand the static and dynamical properties of vibra-
tional polaritons. In other words, two molecules that have nomi-
nally identical infrared absorption bands in free space may expe-
rience qualitatively different polariton dynamics inside an infrared
cavity.

Consider polar-right and non-polar molecules, following the
nomenclature in Fig. 2. These two species essentially have the same
dipole transition strength for the fundamental IR absorption peak
|d10|2. Therefore, if they also have the same fundamental frequency
ω10, they would be indistinguishable in IR spectroscopy. However,
their evolution inside a strongly coupled resonant cavity would be
qualitatively different. For instance, our results show that when a
polar-right vibration in its ground vibrational level outside the cavity
is suddenly placed inside a cavity in total darkness (no photons), the
system evolves into a hybrid light–matter wavepacket that behaves
as if the molecular mode lengthens over sub-picosecond time scales,
while the cavity spontaneously generates photons at the same time
interval (see Fig. 7).

We also unexpectedly find that polar molecules can either expe-
rience bond lengthening or bond shortening, depending on the
shape of their electric dipole function (see Fig. 8). For interac-
tion strengths at the conventional onset of ultrastrong coupling,31,32

polar-right molecules can increase its length by up to 10% from its
equilibrium value (see Fig. 9 for hydrogen fluoride), while develop-
ing an intracavity field with up to about 10 photons on average in a
few hundred femtoseconds.

Mode lengthening in a strongly coupled infrared cavity may in
turn result in different chemical reactivities of polar molecules, in
comparison with free space. Our theoretical and numerical anal-
yses may, thus, provide a consistent basis for the development
of a reaction rate theory for vibrational polaritons that can offer
a microscopic understanding of the observed chemical reaction
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enhancements under vibrational strong coupling,8 which remains to
be an outstanding goal in the field.

For polar and non-polar molecular vibrations, we predict an
ultrafast dynamical buildup of intracavity photons during the evo-
lution of a strongly coupled light–matter system with initially no
vibrational or photonic excitations. This spontaneous generation of
photons is a natural outcome of the wavepacket evolution in the
polariton energy basis, since diabatic initial product states ∣ν⟩∣nc⟩ are
not eigenstates of the light–matter Hamiltonian for any finite cou-
pling strength (λg ≠ 0). In the adiabatic polariton basis, vibration–
photon product states can, thus, be seen as wavepackets that have
broad distribution polariton energies. As long as the wavepacket
has contributions from polariton excited states, then the system can
radiate intracavity photons into the far field through radiative decay.

The energy needed to produce cavity field excitations together
with the vibrational excitation of a molecule comes from the light–
matter interaction Hamiltonian itself. This is simpler to visualize in
the Hilbert space representation [see Eqs. (3) and (4)]. The counter-
rotating terms of the light–matter can directly couple diabatic states
∣ν⟩∣nc⟩ that can be interpreted as the simultaneous excitation of both
the vibrational mode and the cavity field. If these counter-rotating
couplings are significant, we can, thus, expect an overall increase in
the photon number and mode length of the system.

Experimentally, it may be challenging to initialize a strongly
coupled cavity–vibration system in a diabatic product state with
a definite number of vibrational excitations and a definite photon
number ∣ν⟩∣nc⟩. We propose a suitable preparation scheme in Fig. 11.
At early times (t ≪ t0), an individual molecule is placed within a
relevant plasmonic mode volume in total darkness (i.e., no laser
driving). Although the vacuum field amplitude at the molecular–
nanoparticle interface can be large, the molecular vibration does not
exchange energy with the near-field vacuum because either the fun-
damental frequency ω′vib is far detuned from the relevant plasmon
frequency ωcav (Δω ≡ ωc − ω′vib ≠ 0) or the dipole moment for the

relevant vibrational transition is such that the light–matter coupling
is weak (λg ≈ 0), or both conditions occur simultaneously (as in
Fig. 11). Under these conditions, the molecule–nanoparticle system
will simply thermalize with its environment and remain unaltered
in the absence of additional external perturbations. In particular, the
number of photons in the near field will not exceed the level imposed
by the background radiation, which is negligibly small at infrared
frequencies (⟨â†â⟩ ≈ 0).

Strong light–matter coupling is suddenly activated over a time
interval Tchem = t1 − t0 by chemically converting the adsorbed
molecule into a species with a vibrational mode that either becomes
resonant with the near-field vacuum (Δω ≈ 0) or the relevant vibra-
tional transition dipole is such that light–matter coupling becomes
strong (λ0 ≳ 0.1), or both situations occur simultaneously (as in
Fig. 11). UV–Vis photochemistry54 or electron tunneling55 can be
used to activate the bond-forming reaction on the surface of the
nanoparticle at t0. After the reaction is complete (t ≥ t1), the
molecule–nanoparticle system is left in the strong coupling regime
of light–matter interaction. Assuming that the strongly coupled
bond is formed in the vibrational ground state, the system at t1 is left
in the diabatic product state ∣ν = 0⟩∣nc = 0⟩, from where it evolves
into a polariton wavepacket that can eventually radiate a number of
infrared photons into the far field over sub-picosecond time scales
(⟨â†â⟩ ≳ 1). The results in Fig. 7 show that even if the molecule is
left in an excited vibrational state at t1, a similar polariton evolution
can be expected. In the absence of external infrared driving fields,
the generation of near-field quantum light stops when the polariton
wavepacket relaxes to the polariton ground state.

In the proposed scheme, the reaction time scale Tchem is very
important. If this is comparable or much shorter than the Rabi
oscillation period for the vibrational populations under strong light–
matter coupling, the system evolves as described in the main text.
However, if Tchem is much larger than the relevant Rabi period, then
the light–matter system evolves adiabatically from an uncoupled

FIG. 11. Proposed scheme for the generation of near-field infrared quantum light using photochemistry. An individual vibrating molecule adsorbed on a plasmonic
nanoparticle undergoes a photochemical reaction at t0 over the time scale Tchem = |t1 − t0|, producing a molecular bond that couples strongly with the near-field vacuum of
the nanostructure. Depending on the duration of the chemical transformation, the light–matter system is prepared at t1 into a vibrational polariton wavepacket that can emit
quantum light into the far field through radiative relaxation. The panel at the bottom qualitatively describes the associated time evolution of the light–matter coupling strength
λg and the detuning Δω between the relevant plasmonic frequency ωc and the vibrational frequency ωvib.
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product eigenstate ∣ν⟩∣nc⟩ into a polariton eigenstate, not a polariton
wavepacket. For instance, the uncoupled bare vibrationless vacuum
∣ν = 0⟩∣nc = 0⟩ would evolve adiabatically into the polariton ground
state at t1, from where no photons can be emitted. In a realistic
experimental setup, the evolution would be neither sudden nor adi-
abatic. In this most general case, a diabatic product state ∣ν⟩∣nc⟩
prepared at t0 evolves into an excited wavepacket in the polariton
energy basis.

As long as the polariton wavepacket prepared at t1 has a non-
vanishing component in an excited polariton eigenstate, the state
will relax by emitting photons into the far field. The frequencies
of these emitted photons will match the Bohr frequencies between
polariton levels, as energy conservation dictates. However, model-
ing the rates of vibrational polariton relaxation and dephasing under
conditions of ultrastrong light–matter coupling is expected to be
a challenge, as the standard quantum optical master equation is
known to fail for two-level atoms in this regime.56,57

In summary, we have developed the first detailed theoreti-
cal framework for understanding the sub-picosecond dynamics of
anharmonic vibrational polaritons. Starting from a fundamental
light–matter interaction model in the electric dipole approximation,
we correlate the dynamics of both material and photonic observ-
ables of a strongly coupled cavity–vibration system with the under-
lying electrostatic properties of vibrations determined by the molec-
ular electronic structure. Using numerically exact quantum dynamic
methods, we show that the entire shape of the electric dipole func-
tion of anharmonic vibrational modes is relevant for understanding
the femtosecond dynamics of vibrational polaritons in infrared cav-
ities. Our single-molecule analysis may stimulate further develop-
ments on vibrational strong coupling with nanophotonics.58–60 The
results can also be extended in order to take into account many-body
effects, as well as dissipative photonic and material processes. Such
extensions would enable a more direct comparison with available
experimental evidence in liquid-phase cavities.8,13,18,61
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