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ABSTRACT
We propose to use molecular picocavity ensembles as macroscopic coherent nonlinear optical devices enabled by nanoscale strong coupling.
For a generic picocavity model that includes molecular and photonic disorder, we derive theoretical performance bounds for coherent cross-
phase modulation signals using weak classical fields of different frequencies. We show that strong coupling of the picocavity vacua with a
specific vibronic sideband in the molecular emission spectrum results in a significant variation of the effective refractive index of the meta-
material relative to a molecule-free scenario due to a vacuum-induced Autler–Townes effect. For a realistic molecular disorder model, we
demonstrate that cross-phase modulation of optical fields as weak as 10 kW/cm2 is feasible using dilute ensembles of molecular picocavities
at room temperature, provided that the confined vacuum is not resonantly driven by the external probe field. Our work paves the way for the
development of plasmonic metamaterials that exploit strong coupling for optical state preparation and quantum control.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080063

I. INTRODUCTION

Strong light–matter coupling with single molecules in plas-
monic picocavities has emerged as a resource for room-temperature
quantum control with nanoscale optical fields. Organic chro-
mophores in plasmonic picocavities1–4 are promising platforms
for studying cavity quantum electrodynamics (QED) at room
temperature.5,6 Recent experiments7 and rigorous theoretical
modeling8–11 have emphasized the quantum optical origin of
commonly used plasmon-enhanced molecular spectroscopy tech-
niques,12 offering new perspectives on conventional architectures
that can stimulate the study of novel schemes for optical quantum
control at the nanoscale.13

Conventional molecular-cavity QED platforms based on pla-
nar optical microcavities exploit the interaction of the electromag-
netic vacuum with an ensemble of vibronic coherences to reach
the strong and ultrastrong coupling regimes.14–23 The collective

character of the interaction can enhance electric and charge trans-
port processes,24–27 mediated by the cavity-induced delocalization of
the molecular degrees of freedom involved in the transport process.
Collective coupling can also lead to modifications of the chemical
reactivity28,29 and optical response30–33 of organic materials. Collec-
tive strong coupling in a microcavity occurs through a mechanism
analogous to dipole synchronization.34 However, the local field that
each individual molecule experiences in a microcavity is relatively
small.

In contrast, in plasmonics, the extreme sub-wavelength field
confinement achievable with current technology35,36 allows for
light–matter interaction energies to overcome local thermal fluc-
tuations at the level of individual molecules. This can enable
the implementation of local control protocols that exploit strong
vacuum fields for studying optomechanical physics7 and tailored
photochemistry.37,38 Nanoparticle fabrication techniques can pro-
duce a large number of “molecular picocavities.”2 The picocavity
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distribution can be strongly inhomogeneous and must be sam-
pled locally using tip-based nanoprobes39–41 to extract spatially
resolved information about the light–matter coupling dynamics in
the system. Although chemical methods are available to increase the
homogeneity and reproducibility of the picocavity fabrication,4 the
need to develop an efficient local sampling method may be a chal-
lenge for the scalability and integrability of molecular picocavities in
next-generation nanophotonic devices.

Instead of focusing on the local aspects of light–matter inter-
action in disordered picocavity ensembles, in Ref. 42, we explored
a macroscopic approach in which cavity strong coupling was used
for inducing nonlinear optical signals in the response of the ensem-
ble. We assumed a scheme involving cis–trans molecular isomers
(photoswitches) that are embedded in high-quality optical micro-
cavities with photon lifetimes of several picoseconds. We exploited
the unique spectral and coherence properties of molecular photo-
switches to find suitable conditions for inducing a cavity-assisted
transparency window in the absorption spectrum and implement-
ing cross-phase modulation between external laser fields. The phase
nonlinearity was shown to be robust with respect to static disorder
in the molecular dipole orientation and molecular transition fre-
quencies, given a set of restrictions on the allowed vibrational and
photonic dephasing times.

In this work, we significantly generalize the analysis in Ref.
42 that could facilitate experimental implementations. We achieve
this by reducing the number of physical assumptions imposed over
the relevant molecular and photonic degrees of freedom, in par-
ticular, the type and properties of the cavity resonator structures
needed for field confinement, and the class of organic molecules that
couple to the vacuum cavity field. We now consider a broad class
of organic chromophores that exhibit significant electron-vibration
coupling in the lowest electronic singlet transition S0 ↔ S1 for an
intramolecular vinyl stretching mode of frequency ωv ≈ 0.2 eV.43

We assume that static fluctuations of the molecular transition fre-
quencies are the leading source of inhomogeneity in the ensemble
in an effort to understand the fundamental limits of coherent opti-
cal signals in a scenario where the energy disorder is dominant.
Other types of inhomogeneity such as random dipole orientations
have a smaller effect on the optical response of coupled light–matter
systems.42

On the photonic side, we adopt three simplifying assump-
tions about the properties of picocavities: (i) We consider a dilute
ensemble of picocavity structures that are much smaller than the
optical probe wavelength and have negligible inter-particle interac-
tion. This allows us to treat the ensemble as an effective medium,
which to lowest order is dominated by the single-particle response.
(ii) The near-field spectrum of an individual empty picocavity is
treated as a single Lorentzian feature that is red-detuned from
the external probe frequency and has a bandwidth (FWHM) not
greater than the molecular vibration frequency. This ensures that
the direct laser excitation of the picocavity gap resonance is sup-
pressed for weak probe field intensities. (iii) Strong coupling is
achieved on average within each single-molecule picocavity. Our
results rest on these three conditions being simultaneously satis-
fied, which may be challenging to realize with currently available
plasmonic picocavities.1–4

Building on these assumptions, we provide a proof-of-principle
demonstration that single-molecule strong coupling with the pico-

cavity vacuum induces phase modulation of a probe laser field that
coherently drives a disordered ensemble with varying light–matter
coupling strengths, inhomogeneous broadening of molecular tran-
sition frequencies, and sub-picosecond decoherence of molecular
and photonic degrees of freedom. We also show that the presence
of a second (signal) laser induces a controllable vacuum-enhanced
cross-phase modulation at intensities as low as a few kW/cm2. Such
intensities are orders of magnitude lower than the light sources
used in conventional nonlinear optics.44 The ensemble nonlinear-
ity can be optically gated and used as an optical switch, exploit-
ing coherence at macroscopic scales despite the strong structural
disorder.

In the rest of this article, we introduce the macroscopic
approach that allows us to define the effective optical susceptibility
of an ensemble of molecular picocavities (Sec. II A) and a nonlinear
phase modulation signal (Sec. II B). Then, we discuss the quantum
electrodynamics model that describes the light–matter dynamics
in individual picocavities (Sec. III) and finally study the depen-
dence of the nonlinear phase modulation observables on the system
parameters (Secs. IV and V). We summarize our main results in
Sec. VI.

II. EFFECTIVE MEDIUM APPROACH
The phase-changing plasmonic metamaterial studied in this

work is illustrated in Fig. 1. We consider an inhomogeneous layer
composed of an isotropic ensemble of plasmonic nanoparticle inclu-
sions dispersed in a background thin film with dielectric constant
ϵd. Such substrates are routinely used in plasmon-enhanced molec-
ular spectroscopy.45–48 In our case, we assume that the nanoparticles
self-assemble as dimer picocavities with a single organic molecule
embedded in the gap region, where strong light–matter interac-
tion occurs locally within the electric-dipole approximation [see
Fig. 2(b)]. Spherical nanoparticle dimers are common,46 and single-
molecule picocavities with a variety of geometries and material
compositions can be produced.1–4

We estimate the impact of the ensemble of single-molecule pic-
ocavities on the effective refractive index of the metamaterial. Due

FIG. 1. Single-molecule picocavity metasurface. A large ensemble of metal
nanoparticle inclusions on a thin dielectric layer subject to external in-plane driving
by a probe field at the frequency ωp. Each plasmonic picocavity in the ensemble
contains an individual organic molecule in the gap region where the electromag-
netic field is strongly confined. Optical interactions with the molecules result in a
phase shift ΦL of the incoming wave, measured relative to the molecule-free layer.
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FIG. 2. Picocavity ensemble as an effective nonlinear medium. (a) Ensemble of single-molecule picocavities as independent inclusions in a medium with dielectric constant
ϵd. Each picocavity is represented by a local light–matter Hamiltonian Ĥi(t); arrows represent molecular dipoles. (b) Dipolar coupling between a molecular dipole d̂i(t)
and the local field Ê(ri , t) of the ith picocavity. The cavity field decays radiatively at rate κr and non-radiatively at rate κnr. (c) Displaced oscillator model for the electronic
ground (S0) and first excited (S1) electronic state molecular dipole. The local picocavity field drives the vibronic coherence between the ν = 1 and ν̃ = 0 states at
frequency ωc . The zero-phonon line is driven by a weak laser probe at frequency ωp, and a signal laser drives a hot-band vibronic coherence between ν = 1 and ν̃ = 2 at
frequency ωs.

to the absorptive and dispersive character of molecular picocavi-
ties, the metamaterial index depends on the frequency. In particular,
we focus on the phase response of the system at the frequency of
a weak probe field ωp, which is resonant to the peak absorption
frequency of the molecules but is far-detuned from the mean gap
resonance frequency of the picocavities, ωc. We consider molecules
with large vibronic coupling such that the excited state reorga-
nization energy is comparable with the intramolecular vibration
frequency (∼0.2 eV49). This ensures that molecules cannot strongly
emit light at ωp, so the external probe laser is the relevant field source
of the problem.

A. Effective index of the metamaterial
Effective medium theories are used for evaluating the aver-

age macroscopic electromagnetic response of a spatially inhomo-
geneous medium.50 For plasmonic nanoparticle ensembles, several
techniques have been used for computing macroscopic dielectric
response (effective index),51 based on the well-known Maxwell
Garnett theory.52,53 We follow an alternative effective medium
methodology developed in Refs. 54 and 55, which has been applied
to describe inhomogeneous metals,56 polycrystal dielectrics,57 and
polaritons in organic microcavities.58 The dynamical variables of the
problem are written as the sum of a macroscopic average and a local
fluctuation for which coupled equations of motion can be derived
and solved.

We consider a dilute ensemble of N independent single-
molecule picocavities isotropically distributed over a background
medium with dielectric constant ϵd, as illustrated in Fig. 2(a). The
average picocavity size (∼10 nm) is much smaller than the wave-
length of the probe laser (∼600 to 800 nm), which is assumed to
be the dominant electromagnetic source of the problem. In other
words, inelastically scattered light from plasmonic nanoparticles as
well as fluorescence and Raman scattering from organic molecules
are negligibly weak at the probe frequency in comparison with the
driving laser.

We start with the wave equation

∇2E(r, t) − 1
ϵ0c2

∂2

∂t2 Dd(r, t) = 1
ϵ0c2

∂2

∂t2 P(r, t), (1)

where Dd(r, t) = ϵ0ϵdE(r, t) is the displacement field due to the
background dielectric and P(r, t) is the polarization density due
to picocavities with embedded dipoles, assumed to be large near
the picocavities and vanishing in between. Computing this quantity
from first principles is demanding as it contains coupled charge den-
sity contributions from both the nanostructure and the embedded
molecules.59 Field enhancement factors due to interfaces can also, in
principle, be obtained by solving Eq. (1) numerically, given a distri-
bution of particle geometries and compositions. However, we focus
our analysis on the generalities of the coupled light–matter response
at a particular frequency (probe) and defer the exact evaluation of
the spatially dependent local fields for future work.

We write Eq. (1) in the Fourier domain by expanding the elec-
tric field and polarization into components at discrete frequencies
ωn to read

∇2E(r, ωn) +
ϵdω2

n

c2 E(r, ωn) = −
ω2

n

ϵ0c2 P(r, ωn). (2)

For a weak probe field, the polarization at ωn ≡ ωp is expanded
up to linear terms in the probe field, E(r) = Ep(r), as

P(r, ωp) = ϵ0χ(ωp, ωc, ωs, Ec(r), Es(r)) ⋅ Ep(r, ωp), (3)

where the susceptibility χ ≡ χ(ω, r) encodes the response at ωp of the
picocavities containing molecular dipoles.

In general, the susceptibility in Eq. (3) depends on the pico-
cavity frequency ωc and the local cavity field strength, Ec(r). We
also anticipate a dependence of the effective susceptibility on the
frequency ωs and amplitude Es(r) of a signal laser field that is intro-
duced in Sec. III as an additional optical knob in the problem.
In Sec. IV, we derive explicit expressions for χ using a quantum
mechanical model for light–matter coupling in a picocavity.
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Following Refs. 54–58, we write the probe field and susceptibil-
ity as (ω ≈ ωp is always assumed)

Ep(r) = ⟨Ep(r)⟩ + δEp(r), (4)

χ(r) = ⟨χ⟩ + δχ(r), (5)

where ⟨Ep(r)⟩ is the average probe field that propagates according
to the effective index n(ωp) and δEp(r) is a local field fluctuation,
satisfying ⟨δEp(r)⟩ = 0. We expect that δEp(r) are non-zero only in
the immediate vicinity of the picocavities.

Similarly, the susceptibility is partitioned as a sum of a uni-
form average, ⟨χ⟩, and a local fluctuation δχ(r), with ⟨δχ(r)⟩ = 0.
Inserting Eqs. (3)–(5) in Eq. (1), we can derive coupled equations for
the field and susceptibility averages and their fluctuations. We solve
these equations in Appendix A using perturbation theory with the
small parameter being the ratio of the typical inclusion scale to the
wavelength of the electromagnetic wave in the medium. We find that
the effective homogeneous index of the metamaterial at the probe
frequency splits into three terms,

n2(ωp) = ϵd + ⟨χ(ωp)⟩ + Δϵp, (6)

where ⟨χ⟩ = (N/V)χ0, with χ0 being the susceptibility of a single
inclusion, is the average susceptibility and

Δϵp(ωp) =
ω2

p

c2ϵ2
0
∫

dq K(∣k − q∣)
ω2

p
c2 [ϵd + ⟨χ⟩] − q2

(7)

is a correction to the homogeneous index, which takes into account
spatial correlations between local fluctuations of the electric field
and polarization as captured by the Fourier transform of the spatial
correlator K(∣r1 − r2∣) = ⟨δχ(r1)δχ(r2)⟩.

Not going into detailed analysis of Δϵp(ωp), which can be
done explicitly for specific experimental configurations of meta-
material, in Appendix A, we argue that the correlator K(r)
must vanish at the scales of the order of the inclusion size r0
∼ 10 nm; this simply reflects the assumption that the picocavi-
ties are independent. Assuming K(r)∝ exp[−r2/(2r2

0)] yields K(q)
∝ exp[−q2r2

0/2], which is vanishingly small as long as λp = 2π/q
≫ r0. Having λp ∼ 700 nm, in the following, we neglect this
correction and set n2(ωp) = ϵd + ⟨χ(ωp)⟩.

B. Global phase shift via local strong coupling
In what follows, we focus on the contribution of the ensem-

ble of disordered single-molecule picocavities to the variation of the
refractive index Δn(ωp) = ⟨χ(ωp)⟩, relative to a picocavity-free layer
with dielectric constant ϵd. Detecting refractive index variations is
standard in plasmonic sensing.60

Due to the presence of picocavities, a probe wave that
propagates in the metamaterial over a distance L is phase
shifted by

ΔΦL ≡ Re{Δn(ωp)}ωpL/c, (8)

relative to propagation in the pure background dielectric. Since
Im{ϵd}→ 0 and ∣⟨χ⟩∣≪ 1, we have that Δn(ωp) ≈ Re⟨χ(ωp)⟩/2.
The susceptibility function scales as ⟨χ⟩ ∼ (N/V)∣deg ∣2/2ϵ0h with

N/V being the number density of single-molecule picocavities
and ∣deg ∣2 being the dipole moment for the transition induced at
the probe frequency (deg = 3.8 D in Ref. 4). Large phase varia-
tions ΔΦL/ΦL of a few percent relative to the cavity-free back-
ground can be achieved with number densities N/V ∼ 10 μm−3,
which is consistent with our dilute regime assumptions and
experiments.4,61

III. INTRACAVITY LIGHT–MATTER COUPLING SCHEME
Optical phase variations induced by the intracavity molecules

depend on the dynamics of the internal molecular coherences, which
determine the frequency dependence of ⟨χ(ωp)⟩. We study this
dynamics for molecules within the lowest electronic potentials S0
and S1, as illustrated in Fig. 2(c). The ground (ν = 0) and first excited
(ν = 1) vibrational levels in S0 are coupled to the lowest vibra-
tional level (ν̃ = 0) in S1 by the probe and cavity fields, respectively.
The Huang–Rhys factor43 in S1 is large enough to give a sizable
oscillator strength for the ν = 0↔ ν̃ = 1 vibronic sideband. The
vibrational frequency ωv is assumed to exceed kbT/h at room tem-
perature as is typical with vinyl stretching modes (ωv ≈ 0.18 eV).35

The picocavity frequency is set to ωc = ω00̃ − ωv with ω00̃ being
the 0→ 0̃ vibronic absorption frequency. The cavity detuning from
the ω00̃ resonance ensures that the cavity field preferentially drives
the 1 − 0̃ transition and, in particular, prevents driving population
out of the ground vibrational state (ν = 0) in the absence of the
probe.

In addition to the probe field at frequency ωp and the picocav-
ity field at ωc, we introduce in Fig. 2(c) an additional classical signal
field at frequency ωs. The signal field drives the hot vibronic absorp-
tion band ν = 1→ ν̃ = 2 off-resonantly. We show later that this signal
field can be used as an optical switch for controlling the molecu-
lar susceptibility at the probe frequency. In summary, we have the
frequency hierarchy ωc < ωp < ωs.

In order to compute ⟨χ(ωp)⟩, we label the relevant molec-
ular transitions as ∣1⟩ ≡ ∣ν = 0⟩, ∣2⟩ ≡ ∣ν = 1⟩, ∣3⟩ ≡ ∣ν̃ = 0⟩, and ∣4⟩
≡ ∣ν̃ = 2⟩, according to the scheme in Fig. 2(c), to write a picocavity
Hamiltonian of the form (we use h ≡ 1 throughout)

Ĥ = ωc â†â + ω21∣2⟩⟨2∣ + ω31∣3⟩⟨3∣ + ω41∣4⟩⟨4∣
+ gc∣3⟩⟨2∣â +Ωp∣3⟩⟨1∣e−iωpt +Ωs∣4⟩⟨2∣e−iωst +H.c., (9)

where ωij = (Ei − Ej)/h denote the molecular transition frequencies,
gc is the picocavity vacuum Rabi frequency, Ωp is the classical Rabi
frequency of the probe field, and Ωs is the classical signal Rabi
frequency. The bosonic cavity field operator is â, and H.c. stands
for Hermitian conjugation. Energy is given relative to the ground
vibrational level (i.e., E1 = 0). Although the analysis reduces to an
effective four-level system, the displaced oscillator picture for the S0
and S1 manifolds is helpful for anticipating potential issues in an
experimental implementation of the scheme. It also serves as the
basis of further studies that take energy transport dynamics into
account.62

For a quantized picocavity in the low-excitation manifold, the
molecular basis should be supplemented with Fock states ∣nc⟩ to
give the dressed basis: ∣1̃⟩ ≡ ∣1; 0c⟩, ∣2̃⟩ ≡ ∣2; 1c⟩, ∣3̃⟩ ≡ ∣3; 0c⟩, and ∣4̃⟩
≡ ∣4; 1c⟩. In the dressed-state picture, the probe field Ωp drives the
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TABLE I. Description and notation of the incoherent channels considered in this work (left), the associated Lindblad operators
in the bare basis (center), and the corresponding decoherence timescales (right).

Dissipative process Lindblad operator (L̂α) Timescales

Cavity photon leakage (κ) √
κâ ∼10 to 102 fs

Intramolecular vibrational relaxation in S0 (γv)
√γv ∣1⟩⟨2∣ ∼1 ps

Intramolecular vibrational relaxation in S1 (γ′v)
√

γ′v ∣3⟩⟨4∣ ∼1 ps
Dephasing of zero-phonon resonance (γe)

√γe ∣1⟩⟨3∣ ∼1 to 103 ps

transition ∣1̃⟩↔ ∣3̃⟩within the vacuum manifold, and the signal field
Ωs drives the transition ∣2̃⟩↔ ∣4̃⟩ within the one-photon manifold.
The picocavity field admixes the vacuum and one-photon states ∣2̃⟩
and ∣3̃⟩. The coupling of the quantized picocavity field with other
molecular transitions is neglected.

We model the evolution of the reduced density matrix ρ̂(t) for
an individual picocavity with a Lindblad quantum master equation
of the form42

d
dt

ρ̂ = −i[Ĥ, ρ̂] +∑
α

L̂αρ̂L̂†
α −

1
2
(L̂†

αL̂αρ̂ + ρ̂L̂†
αL̂α), (10)

where Ĥ is given in Eq. (9), and L̂α is the Lindblad operator associ-
ated with the αth dissipative channel. In Table I, we list the Lindblad
operators used in this work and the associated dephasing times in
the bare basis. We use a notation in which the rate γij describes the
decay of the off-diagonal element ρij ≡ ⟨i∣ρ̂∣ j⟩ in the dressed basis.

For example, vibrational relaxation from ν = 1 (state ∣2⟩) to ν = 0
(state ∣1⟩) in S0 occurs at the rate γv ∼ 1 ps−1. On the other hand,
the bare picocavity photon lifetime is κ−1 ∼ 10–100 fs.35 Therefore,
the combined decay rate of the dressed Raman coherence ⟨1̃∣ρ̂∣2̃⟩ is
γ21 = γv/2 + κ/2 as ∣2̃⟩ has a single-photon character. The lifetime of
the excited electronic state S1 is γ31 ≡ γe, given by either fluorescence
or internal conversion. We set γ41 ≡ γ31 throughout.

IV. HOMOGENEOUS AUTLER–TOWNES RESPONSE
Starting from the master equation in Eq. (10), we follow

Ref. 42 and derive a general expression for susceptibility for a
homogeneous ensemble of N independent molecules in identi-
cal single-molecule picocavities, subject to classical driving by the
probe and signal fields. We reproduce here the final expression,
given by

χ(ωp) = (
N
V
) ∣d13∣2

ϵ0h̵
[Δ21 + iγ21][Δ41 + iγ41] −Ω2

s

[Δ31 + iγ31]([Δ21 + iγ21][Δ41 + iγ41] −Ω2
s ) − g2

c [Δ41 + iγ41]
, (11)

and refer readers to Appendix B for the technical details of the
derivation. In Eq. (11), we denote ∣d31∣2 as the 0-0̃ oscillator strength,
Δ31 ≡ ωp − ω31 is the probe detuning, and Δ21 ≡ ωp − ωc − ω21
= Δ31 − Δc is the two-photon Raman detuning. Introducing the
cavity detuning Δc ≡ ωc − ω32 and the signal detuning Δs ≡ ωs
− ω42, we can write Δ41 ≡ Δ31 − Δc + Δs. The ensemble suscep-
tibility in Eq. (11) involves only the single-molecule coupling
strength gc, highlighting the local character of the cavity-induced
nonlinearity.

Although we focus on the polarization component at the
probe frequency to derive Eq. (11), steady-state solutions for other
polarization components at the cavity and signal field frequencies
can also be derived from the Lindblad quantum master equa-
tion, resulting in a more general coupled mode theory that would
describe the coherent interaction between different field compo-
nents mediated by the material degrees of freedom.63,64 Solving
this more general problem is beyond the current scope of this
work.

In Fig. 3, we plot the absorptive and dispersive parts
of the disorder-free susceptibility χ(ωp) around the bare 0-0̃

absorption resonance under conditions of strong intracavity
coupling. In Fig. 3(a), we show the system response with-
out the signal field (Ωs = 0). The absorptive response shows
two Autler–Townes (AT) peaks at ωp ≈ ω31 ± gc. The dou-
blet opens a broad semi-transparent window (solid line)
due to cavity-induced AT splitting of the dressed states ∣3̃⟩
and ∣2̃⟩. The width of the Autler–Townes transparency win-
dow ΓAT can be defined by A(ΓAT/2) = A(gc)/2 with A(ω)
≡ Im⟨χ(ω)⟩. For a homogeneous system, ΓAT scales linearly with
the cavity coupling gc.

42 On the other hand, the amount of residual
absorption at the bare probe resonance (Δp = 0) can be shown to
scale with the ratio γ21/γ31.65

Figure 3(a) shows that at the center of the AT doublet, the
probe field experiences normal dispersion (dashed line) in contrast
to the “slow-light” dispersion expected for an interference-based
transparency window.65 The plot also shows a relatively broad
region within the AT transparency window (order γ31 in frequency)
in which probe dispersion overcomes absorption, i.e., Reχ(ωp)
> Imχ(ωp). Clearly, this condition always holds away from absorp-
tive resonances [e.g., ∣Δp∣ > 6γ31 in Fig. 3(a)]. However, the ability
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FIG. 3. Disorder-free molecular susceptibility. (a) Absorptive (solid line) and dis-
persive (dashed line) components of the homogeneous susceptibility χ(ωp) near
the bare probe resonance (dotted line) in the absence of a signal field. The
Autler–Townes (AT) doublet is shown. System parameters are (gc , γ21, γ42)

= (3.0, 0.5, 1.0) in units of the homogeneous linewidth γ31. (b) Absorptive and dis-
persive AT response with the same parameters as in panel (a) but in the presence
of a signal field with Rabi frequency Ωs = γ31, blue detuned by Δs = γ31 from the
2→ 4 transition. The AT doublet and a two-photon absorption (TPA41) peak are
shown. The shaded area shows a frequency region where, in the absence of the
signal field, dispersion overcomes absorption. For smaller signal field amplitudes,
the transparency window at this region remains open.

of introducing a dispersive response in a frequency range that is
otherwise opaque is a key resource for optical switching (see in the
following).

In Fig. 3(b), we show the susceptibility for the same condi-
tions as in Fig. 3(a), but now in the presence of a strong sig-
nal field (Ωs = γ31), detuned from the 2→ 4 transition frequency
(Δs = γ42). The positions of the peaks AT± remain practically
unchanged, and the probe response continues to exhibit the same
AT doublet. However, now, a two-photon absorption resonance
(TPA41) destroys the transparency window: we see a broad back-
ground with a peak at the TPA41 resonance condition, Δp − Δc
+ Δs = 0. For Δc = 0 and Δs = γ31, the resonance occurs at Δp = −γ31.
This TPA channel can be understood as a result of the mixing
between the dressed states ∣2̃⟩ and ∣3̃⟩, mediated by an intracavity

vacuum that acts as an effective doorway mechanism for the (ωp, ωs)
process,

∣1⟩∣0c⟩
ωpÐÐ→(∣3⟩∣0c⟩↔ ∣2⟩∣1c⟩)

ωsÐÐ→ ∣4⟩∣1c⟩.

Note that the classical probe and signal fields do not change the
intracavity photon number. This emerging TPA channel effec-
tively modulates the dispersive response of the probe field within
the AT window by making absorption comparable to the disper-
sion [Fig. 3(b), shaded area]. As we discuss in the following, at
lower signal beam intensities, the detrimental effect of the sig-
nal field can be small enough to preserve its dispersive properties
despite increased absorption. Additional nonlinear absorption chan-
nels such as hot absorption 1 − 1̃ can be suppressed either by
controlling the probe field intensity or selecting molecular vibra-
tions with different fundamental frequencies in S0 and S1 (e.g.,
azobenzene66).

V. DISORDER-AVERAGED AUTLER–TOWNES
RESPONSE
A. Rabi and energy disorder

In this section, we study the line shape of the AT transparency
window under two types of structural disorder: random intracav-
ity volumes and random molecular transition frequencies. The first
arises from the distribution of gap volumes Vg in the picocav-
ity ensemble. The volume distribution is assumed to be Gaussian
with mean value ⟨V g⟩ and standard deviation σVg . Given that gc

= f /
√

Vg
67 with f a constant, the distribution of Rabi frequencies

gc is also a Gaussian with mean value ⟨gc⟩ = f /
√
⟨Vg⟩ and vari-

ance σ2
gc = f 2σVg /2⟨Vg⟩3/2, where only leading terms in the small

parameter σVg /⟨Vg⟩ are kept.
In Fig. 4, we illustrate the impact of Gaussian energy disorder

of the molecular transition frequencies. The inhomogeneous width
of the cavity-free probe absorption band is σ31 (FWHM ≈ 2.4σ31).
The ground state vibrational band ν = 0→ ν = 1 has inhomogeneous
width σ21, and the width of the hot-band absorption ν = 1→ ν̃ = 2 is
σ42. Since the pure vibrational linewidths (σ ∼ 4 meV68) are much
smaller than typical vibronic linewidths (σ ∼ 100 meV43), we have
σ21/σ31 ≪ 1 and σ42 ∼ σ31.

In Fig. 5(a), we plot the AT absorption doublet for an ensem-
ble with a Gaussian distribution of Rabi frequencies, but otherwise
homogeneous, in the absence of a signal field (Ωs = 0). In compari-
son with the fully homogeneous response from Sec. IV, the doublet
line shape remains largely unaltered even for broad distributions
with σgc ≈ ⟨gc⟩. This is reminiscent of the weak dependence of the
cavity response on the distribution of dipole moment orientations
found in Ref. 42. Therefore, we neglect both orientational and mode
volume disorder in what follows.

In Fig. 5(b), the AT line shape is shown for a fixed Rabi fre-
quency (σgc → 0), but the molecular levels are inhomogeneously
broadened, and the response is numerically averaged over a Gaus-
sian distribution of energy levels. No signal field is applied. We
see that the overall doublet shape of the AT transparency window
is insensitive to the increase in the vibronic linewidth σ31. This
is expected as the AT transparency window is sustained by the
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FIG. 4. Inhomogeneous broadening scheme. The probe absorption band at ω31
is inhomogeneously broadened due to static energy disorder by σ31 (FWHM
≈ 2.355σ31). The ground state vibrational band at ω21 is broadened by σ21, and
the inhomogeneous width of the hot-band absorption band is σ42. The probe and
signal fields are detuned from the peak frequencies by Δp and Δs, respectively.
The ρ32 vibronic coherence is driven by an ensemble of cavity fields at ωc , leading
to a Gaussian distribution of Rabi frequencies with standard deviation σgc .

cavity-induced Raman coherence ρ21 = ⟨1, 0c∣ρ̂∣2, 1c⟩, which is lim-
ited by the photon decay rate κ.

B. Theoretical limits for phase modulation
We now study the feasibility of the proposed optical switch

in disordered picocavity ensembles. In order for the relative phase
shift ΔΦL/ΦL in Eq. (8) to be detectable, dispersion of the probe
field should overcome absorptive losses. Therefore, we use the
figure-of-merit

ηp(ωp) ≡
Reχ(ωp)
Imχ(ωp)

(12)

to quantify the theoretical performance of the metamaterial for
phase modulation at the probe frequency. The global dispersive
behavior of the medium (phase shifting) prevails over inherent
molecular absorption losses when ηp exceeds unity over a band-
width γ31. In a heterodyne setting that detects the interference of
a transmitted probe field Ep(ωp) with a reference beam, the ratio
ηp correlates with the fringe visibility. If the transmitted probe field
is largely attenuated (ηp ≪ 1), interference with a reference field
cannot be resolved.

To account for energy disorder, we average Eq. (12) numer-
ically using independent Gaussian distributions for each molecular
transition frequency. We also estimate this average analytically using
independent Lorentzian distributions for the molecular transition
frequencies. As we prove in Appendix C, the Lorentzian averaging
reduces to replacing γij in Eq. (11) with Σij = γij + σij everywhere.
These analytical results allow us to gain insight into the multiple
parameters that determine the effective nonlinear probe response,

FIG. 5. Autler–Townes doublet with inhomogeneous broadening. (a) Probe absorp-
tion line shape for a Gaussian distribution of Rabi couplings with mean value
⟨gc⟩ = 3γ31, and variable standard deviation σgc/γ31 = 0 (dotted line), 0.5 (solid
line), and 1.0 (dashed line). No signal field is present, and molecular transitions
are homogeneously broadened with (γ21, γ42) = (0.5, 1.0) in units of γ31. The
Autler–Townes width ΓAT is highlighted. (b) Absorption line shape for a narrow
Rabi frequency distribution with (⟨gc⟩, σgc) = (3.0, 0.01) in units of γ31 and inho-
mogeneously broadened molecular levels with σ31/γ31 = 0 (dotted line), 2.0 (solid
line), and 4.0 (dashed line). In both panels, we set Δc = 0.

and we confirm numerically that a more realistic Gaussian disorder
gives the same trends for key observables as the Lorentzian disor-
der model. The Lorentzian disorder technique has also been used
in Refs. 42, 69, and 70 to simplify the average of system observables
over a random distribution of Hamiltonian parameters.

We can rewrite Eq. (12) for the figure-of-merit by separating
the real and imaginary parts of the susceptibility (11). As a next step,
we apply our technique of averaging over Lorentzian disorder, devel-
oped in Ref. 42 and described in detail in Appendix C. In the absence
of a signal field (Ωs = 0), the ratio ηp as a function of probe detuning
Δp for a resonant cavity (Δc = 0) becomes

ηp(Δp) =
g2

c Δp − Δp(Δ2
p + Σ2

21)
Σ31(Δ2

p + Σ2
21) + Σ21g2

c
, (13)

where the parameters Σij ≡ γij + σij represent total decoherence
rates, including homogeneous (γij) and inhomogeneous (σij)
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contributions. For the numerical averaging over Gaussian disorder,
we used this expression with Σik → γik.

In a cavity-free scenario, Eq. (13) reduces to the linear scal-
ing ηp = −Δp/Σ31. This linear dependence is reproduced also if the
averaging over inhomogeneous broadening is carried out numeri-
cally using Gaussian disorder [shown as a dotted line in Fig. 6(a)].
The cavity vacuum induces a deviation from this linear scaling. As
numerical averaging shows [solid and dashed lines in Fig. 6(a)], the
figure-of-merit increases and exhibits a maximum when the probe
is slightly detuned from the center of the AT window with the
maximum value ηmax considerably exceeding 1. We can estimate
the optimal detuning at which ηmax is reached using our analytical
Lorentz-averaged model (13). We find

Δp,optimal ≈ gc

√
Σ21

Σ31 + 3Σ21
, (14)

FIG. 6. Autler–Townes transparency in a disordered ensemble. (a) Figure-of-merit
ηp for the refractive index variation within an Autler–Townes window with system
parameters (gc , σ31, σ21) = (2.0, 2.0, 0.01) in units of γ31 (numerical averaging).
Curves are shown in the absence of the signal field (solid line) and in the presence
of a signal field with Ωs = 0.6γ31 and Δs = 1γ31 (dashed line). The maximum
figure-of-merit ηmax is highlighted. Cavity-free results for the same broadening
parameters are also shown (dotted line). (b) Left axis shows the Autler–Townes
transparency width ΓAT as a function of γ21 for Lorentzian disorder (solid line)
and Gaussian disorder (dashed line) with system parameters (gc , σ31, σ21, Ωs)

= (3.0, 2.0, 0.01, 0) in units of γ31. The right axis shows the corresponding optimal
figure-of-merit ratio ηmax for Lorentzian disorder (solid line) and Gaussian disorder
(dashed line).

where we dropped quadratic terms in Σ21/gc. For low-quality
picocavities in the strong coupling regime, we have γv ≪ κ
≲ γ31 < gc.

We now can estimate ηmax = ηp(Δp,optimal). In the framework
of the Lorentzian disorder model, the maximum figure-of-merit
ηmax is

ηmax =
gc√

Σ21(Σ31 + 3Σ21)
( Σ31 + 2Σ21

2Σ31 + 3Σ21
), (15)

where we have ignored terms that are second order in Σ21/gc. If
Σ21 is small, then ηmax is large, which is the case we studied in
Ref. 42. Consider now an ensemble of lossy picocavities with a large
Raman decoherence rate Σ21 ∼ Σ31. Equation (15) then predicts that
cavity-mediated optical phase modulation within the AT transmis-
sion window can still be feasible, provided that the single-molecule
Rabi coupling is strong enough. For example, we can achieve
ηmax ≥ 1 even for Σ21/Σ31 = 1 with Rabi couplings gc/Σ31 ≥ 3.33.
For a representative zero-phonon linewidth Σ31 ≈ 50 meV,4,12 this
corresponds to gc ≈ 167 meV. Improving the quality factor of the
picocavities (Σ21 ∼ κ) such that the ratio Σ21/Σ31 decreases by a
factor of two reduces the constraint on single-molecule coupling
to gc ≥ 98 meV for phase modulation to be detectable. Single-
molecule couplings of these magnitudes are within experimental
reach.1,3,4,71

Let us now check if the Lorentz approximation is consis-
tent with the numerical Gaussian-based approach. For the system
parameters used in Fig. 6(a), the Lorentz disorder model predicts the
maximum figure-of-merit ηmax ≈ 2.0 at Δp = 0.55γ31. This detuning
is only slightly higher than the value 0.41γ31, predicted by numer-
ically averaging Eq. (13) with Σik → γik over independent Gaussian
frequency distributions [Fig. 6(a), solid line]. In the presence of a sig-
nal field (Ωs > 0), blue detuned from the 4–2 resonance by Δs = γ13,
the AT window line shape becomes distorted (see Fig. 3), and ηmax
decreases monotonically with increasing Ωs [Fig. 6(a), dashed line],
as discussed in more detail in Sec. V C.

Complementary to the discussion of the frequency-dependent
phase performance parameter ηp(ωp), we can use the Lorentz disor-
der model to analyze the line shape of the Autler–Townes window.
As already mentioned, the position of the AT± doublet peaks is
largely insensitive to disorder. However, transparency within the AT
window is reduced as the quality of the vibrational Raman coher-
ence ρ21 degrades with increasing γ21 and σ21, which decreases the
width ΓAT.

In the Lorentz disorder model, the AT width can be written as

ΓAT ≈ 2
√

g2
c −
√

2gc(Σ31 + Σ21), (16)

which shows that the AT window is formally closed when gc

≤
√

2(Σ21 + Σ31).
Figure 6(b) shows that the Lorentz disorder model, in general,

overestimates ΓAT relative to Gaussian averaging. For the parame-
ters in Fig. 6(b), the AT window is predicted by Eq. (16) to close for
γ21 = 1.78γ31, which agrees well with the value (1.71γ31) obtained
for Gaussian disorder. Figure 6(b) also shows that Eq. (15) correctly
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captures the scaling of ηmax with the Raman decay rate γ21 for narrow
vibrational coherences with σ21 ≪ σ31.

We conclude that ηp > 1, which corresponds to observable
phase shifts, can be achieved in our metamaterial despite strong
energy disorder and ultra-fast cavity photon decoherence as long as
the coupling constant gc is large enough.

C. Controlling the probe phase shift with a weak
signal laser

Let us finally discuss the nonlinear interaction between the
probe field at ωp and an additional signal laser at ωs, mediated by
the ensemble of single-molecule picocavities. In the presence of the
signal field, we derive from Eq. (11) a more general expression for
ηp than from Eq. (13), which captures the dependence of χp on
the signal frequency ωs and its Rabi frequency Ωs ∝ ∣Es∣. We then
average ηp over independent fluctuations of the molecular transi-
tion frequencies ω31, ω32, and ω42. Assuming the Lorentzian disorder
model and applying the Lorentz averaging technique outlined in
Appendix C, we obtain a disorder-averaged expression for ηp that
reads42

ηp(Δp) =
g2

c (Δp − λsΔ41) − Δp[(Δp − λsΔ41)2 + (Σ21 + λsΣ41)2]
Σ31[(Δp − λsΔ41)2 + (Σ21 + λsΣ41)2] + g2

c (Σ21 + λsΣ41)
,

(17)

where Δ31 = Δ21 ≡ Δp. This equation can be used for numerical mod-
eling with Gaussian disorder upon standard replacement Σik → γik.
Here, we have introduced the dimensionless signal parameter

λs =
Ω2

s

(Δ2
41 + Σ2

41)
, (18)

such that Eq. (17) reduces to Eq. (13) when λs = 0. The impact of
the signal field is determined entirely by λs. We find that finite
λs results in suppression of ηp so that the probe-only performance
in Eq. (13) corresponds to the upper bound of performance of
the metamaterial with both probe and signal fields being present.
Such a suppression is explained by the observation that the signal
field tends to close the AT transparency window [see Fig. 3(b)].
Fortunately, reaching ηp > 1 is still quite possible with small val-
ues of λs. For example, the dashed line in Fig. 6(a) corresponds
to the signal-on arrangement with λs = 0.036. As Eq. (18) shows,
small values of λs are achieved either by reducing the strength
of the signal field or by detuning it from the ∣2⟩→ ∣4⟩ transi-
tion (since Δ41 = Δp + Δs). Both these actions effectively reduce the
detrimental effect of losses via the two-photon absorption channel
TPA41.

Our metamaterial thus implements a weak-field controllable
optical nonlinearity with the phase shift of the probe beam being
controlled by the strength of the signal beam. It can also be used
as an optical switch; when ηp > 1, the probe beam passing through
the disordered metamaterial preserves coherence and can interfere
with the reference beam, whereas ηp < 1 means loss of coherence and
destroyed interference. The crossover between these two regimes is
reversible and is controlled by simply changing the intensity of the
signal beam.

FIG. 7. Performance parameter for optical phase switching. Optimal performance
parameter ηmax as a function of the cavity coupling strength gc and signal
strength Ωs in an Autler–Townes window corresponding to (σ31, γ21, σ21, Δs)

= (2.0, 0.5, 0.01, 1.0) in units of γ31. The dashed contour marks the detection limit
ηmax = 1, and two possible ON–OFF phase switch configurations are highlighted.

In Fig. 7, we show a parameter map (gc, Ωs, ηmax) for optical
switching with a signal field detuned by Δs = 1.0γ31. We assume a rel-
atively large Raman decay rate γ21 = 0.5γ31 to highlight the feasibility
of the optical switching scheme under realistic picocavity conditions.
For a typical S1 radiative lifetime 1/γ31 ∼ 1 ns and inhomogeneous
width σ31 ∼ 50 meV, Fig. 7 shows that signal pulses with far-field
intensities Is ∼ 10 kW/cm2 (d42 ∼ 1 D) are sufficient to switch off
coherent phase modulation in an ensemble of resonant picocavi-
ties in the Autler–Townes regime (gc > Σ31). These field intensi-
ties are orders of magnitude smaller than the typical two-photon
excitation intensities used in photochemistry (∼106 W/cm272,73) or
microscopy (I ∼ 1015 W/cm274,75), which can facilitate the imple-
mentation of an optical switch based on the Autler–Townes
window.

VI. CONCLUSIONS
We perform a proof-of-principle theoretical analysis of coher-

ent optical phase manipulation assisted by the electromagnetic
vacuum in a dilute ensemble of disordered single-molecule plas-
monic picocavities. We show that strong light–matter coupling with
individual organic chromophores that have well-resolved vibronic
progressions in the absorption and emission spectra opens an
Autler–Townes transparency band65 in the 0→ 0̃ sideband of the
chromophore absorption spectrum, which we propose to use for
coherent manipulations of the average refractive index of the dis-
ordered medium at these frequencies, resulting in a controllable
phase shift of a propagating probe wave tuned on resonance with
the 0→ 0̃ sideband. Although the achievable refractive index varia-
tions may be small in a potential realization of the proposed scheme,
plasmonic nanocavity structures can, in principle, be engineered
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to detect refractive index changes at optical frequencies of 0.1% or
less.76

Assuming a Lorentzian model for the picocavity spectrum and
a displaced oscillator model for the chromophore levels,17,18,29 we
obtain an analytical expression for the ratio between the disper-
sive and absorptive parts of the average system susceptibility at a
probe frequency, which highlights the dependence of the predicted
phase shift on important design parameters such as the inhomoge-
neous linewidth of the relevant vibronic transitions, the radiative
and non-radiative molecular relaxation rates, the picocavity pho-
ton lifetime, and the average single-molecule Rabi frequency. The
predicted phase signal may be challenging to detect with current
plasmonic picocavities,1–4 but expected improvements in nanofab-
rication may enable the observation of the proposed phase control
scheme.

In our analysis, we take into account realistic sources of dis-
order and relaxation including a distribution of Rabi couplings,
energy disorder in the molecular transition frequencies, vibrational
relaxation, and photon losses. The figure-of-merit for the pro-
posed picocavity-induced phase shift at the probe frequency was
found to be significantly more sensitive to static disorder in the
molecular transition frequencies than disorder in the Rabi coupling
strength.

The proposed phase shift of the probe field can be dynami-
cally gated with an additional signal field at a higher frequency set
to drive an excited state molecular coherence. The phase switch
mechanism is interpreted as the opening of a novel two-color
two-photon absorption process in the molecules, mediated and
enhanced by the ensemble of picocavity vacua. Signal fields as
weak as 10 kW/cm2 are estimated to be sufficient for implement-
ing optical switching behavior in a disordered picocavity ensem-
ble. Our work thus opens the way toward the development of
few-photon nonlinear optical devices with molecular picocavity
metamaterials.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
INDEX AT THE PROBE FREQUENCY

Here, we derive Eq. (6) from the main text, following the pro-
cedure created in Refs. 54 and 55 for various kinds of random
media that allow for the perturbative approach. Our starting point
is Eq. (1). Its nth discrete frequency component oscillating at the
frequency ωn satisfies the wave equation

∇2En(r) +
ϵdω2

n

c2 En(r) = −
ω2

n

ϵ0c2 Pn(r), (A1)

where we used Dd(r) = ϵ0ϵdE(r) and Pn(r) is the component of
the polarization density at ωn, caused by inclusions (cavities with
embedded point dipoles). We assume that at the probe frequency
(ωn = ωp), a linear relationship between the polarization and the
(weak) probe field holds so that

Pp(r) = ϵ0χL(ωp, r) ⋅ Ep(r), (A2)

where the susceptibility χ = χ(ω, r) captures the fact that the
polarization is created locally and vanishes between the picocavities.

Following the effective medium approach from Refs. 54–58, we
write the electric field and the susceptibility as

Ep(r) = ⟨Ep(r)⟩ + δEp(r), (A3)

χ(r) = ⟨χ⟩ + δχ(r), (A4)

where ⟨Ep(r)⟩ is the average probe field that propagates accord-
ing to the effective index n(ωp) and δEp(r) is a position-dependent
fluctuation of the electric field caused by the presence of picocavi-
ties; ⟨χ⟩ is the uniform effective susceptibility of the medium (the
effective medium correction), and δχ(r) is the local fluctuation of
the response. Our mean values are chosen in such a way that, by
construction,

⟨δEp(r)⟩ = ⟨δχ(r)⟩ = 0. (A5)

Inserting Eqs. (A2)–(A4) into Eq. (A1) and averaging the result,
we obtain an equation for the averages, which reads

∇2⟨E(r)⟩ + ω2
p

c2 [ϵd + ⟨χ⟩]⟨E(r)⟩ = −
ω2

p

ϵ0c2 ⟨δχ(r) δE(r)⟩, (A6)

where we used (A5) to eliminate the terms proportional to δχ and
δE times a position-independent factor. We then subtract (A6) from
our starting-point equation [Eq. (A1) with (A2)–(A4) plugged in].
This leaves us with an equation for the fluctuations,

∇2 δE(r) + ω2
p

c2 [ϵd + ⟨χ⟩]δE(r)

= − ω2
p

ϵ0c2 δχ(r) ⟨E(r)⟩ − ω2
p

ϵ0c2 [δχ(r)δE(r) − ⟨δχ(r)δE(r)⟩].
(A7)

For now, we will assume that the role of the fluctua-
tions is relatively small; we will quantify this assumption in
the following. This allows us to neglect the second-order term
∝ [δχ(r)δE(r) − ⟨δχ(r)δE(r)⟩] in the last equation. Our position-
dependent first-order equations describing fields in the disordered
medium, thus, become

∇2⟨E(r)⟩ + ω2
p

c2 [ϵd + ⟨χ⟩]⟨E(r)⟩ = −
ω2

p

c2 ⟨δχ(r) δE(r)⟩, (A8)

∇2 δE(r) + ω2
p

c2 [ϵd + ⟨χ⟩]δE(r) = −ω2
p

c2 δχ(r) ⟨E(r)⟩. (A9)

We keep the second-order term in Eq. (A8) for the averages
since there it is the lowest-order disorder-dependent contribution.
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The next step is to Fourier-transform these equations. This
gives

(ω2
p

c2 [ϵd + ⟨χ⟩] − k2)⟨E(k)⟩ = − ω2
p

ϵ0c2 ∫ dq⟨δχ(k − q)δE(q)⟩,

(A10)

(ω2
p

c2 [ϵd + ⟨χ⟩] − k2)δE(k) = − ω2
p

ϵ0c2 ∫ dq′δχ(k − q′)⟨E(q′)⟩.

(A11)

We solve Eq. (A11) for δE(k) and plug it into the integrand in
Eq. (A10). We get

(ω2
p

c2 [ϵd + ⟨χ⟩] − k2)⟨E(k)⟩

= ( ω2
p

ϵ0c2 )
2

∬ dq dq′
⟨E(q′)⟩

(ω2
p

c2 [ϵd + ⟨χ⟩] − q2)

× ⟨δχ(k − q)δχ(q − q′)⟩. (A12)

This integral equation for ⟨E(k)⟩ shows that the field aver-
age depends on two deterministic components: the propaga-
tor of electromagnetic waves in the effective medium, G(q)

= (ω2
p

c2 [ϵd + ⟨χ⟩] − q2)
−1

, and the correlator ⟨δχ(k − q)δχ(k − q′)⟩.
We can simplify it further by examining the properties of this
correlator. Let us denote as

K(∣r1 − r2∣) = ⟨δχ(r1)δχ(r2)⟩ (A13)

the spatial correlator of the susceptibility fluctuations. This form is
very general and only assumes that the medium is homogeneous
and isotropic on average (and hence the correlator depends only on
∣r1 − r2∣). We can now write

⟨δχ(k − q)δχ(q − q′)⟩ = 1
(2π)6 ∬ dr1dr2

× e−i(k−q)r1 e−i(q−q′)r2 K(∣r1 − r2∣) (A14)

= 1
(2π)6 ∫ dr2 e−i(k−q′)r2 ∫ d(r1 − r2)

× e−i(k−q)(r1−r2)K(∣r1 − r2∣) (A15)

= δ(k − q′)K(∣k − q∣), (A16)

with

K(q) = 1
(2π)3 ∫ dr e−iqrK(r) (A17)

being the Fourier transform of the spatial correlator.
We now plug Eq. (A16) into Eq. (A12) and carry out integra-

tion over q′. Thanks to the delta-function, ⟨E(q′)⟩ transforms into
⟨E(k)⟩ and cancels out in the both sides of this equation. This hap-
pens since the system is homogeneous on average. Therefore, instead

of an integral equation involving Fourier components of the field
amplitude, we are left simply with the following modified dispersion
equation of electromagnetic waves in our disordered medium:

(ω2
p

c2 [ϵd + ⟨χ⟩] − k2) = ( ω2
p

ϵ0c2 )
2

∫ dq G(q)K(∣k − q∣) ≡ ω2
p

c2 Δϵp,

(A18)

where Δϵp = ω2
p/(c2ϵ2

0) ∫ dq G(q)K(∣k − q∣) is a determin-
istic, coordinate-independent correction to the averaged
susceptibility ⟨χ⟩.

The discussion in the text is done in the effective medium
approximation under the assumption that Δϵp is negligibly small.
Equation (A18) allows one to verify this assumption for a given
set of parameters relevant to their system and to quantify the
error associated with this assumption. The full procedure requires
(i) introducing a sample-specific form of the correlator K(r) (ii)
as well as an infinitesimally small damping in order to remove
the pole due to the Green’s function from the integration axis
and (iii) carrying the integration out explicitly. In the following,
we will only show that having this correction small is equiv-
alent to the requirement of having a wavelength, λ, large in
comparison with the average scale r0 at which the fluctuations
happen.

Consider, for example, Gaussian spatial correlations: K(r)
= K0 e−r2/(2r2

0), where the constant K0 expresses the magnitude of
the correlator and r0 is the scale of the order of the inclusion size; by
choosing it this way, we basically say that the correlations between
the electric field and induced susceptibility vanish outside of each
picocavity. Then, the magnitude of its Fourier transform K(q)
= K0 e−q2r2

0/2 is indeed determined by the ratio (r0/λ)2 in the
exponent, which vanishes as long as for the typical wavelength λ
= 2π/q≫ r0. Based on the analysis of Ref. 58 that shows the results of
this approach are not sensitive to the specific choice of the correlator,
we can argue that it is a general, correlator-independent property of
our metamaterial.

APPENDIX B: DERIVATION OF THE EFFECTIVE
PROBE SUSCEPTIBILITY

Here, we outline the steps in the derivation of Eq. (11) in the
main text, following closely the method used in Ref. 42. In order to
describe light–matter interaction in an effective four-level vibronic
state manifold, the molecular system Hamiltonian Ĥ from Eq. (9)
is used in a Lindblad quantum master equation [Eq. (10)], which
reads

d
dt

ρ̂ = −i[Ĥ, ρ̂] +Lκ[ρ̂] +Lγv [ρ̂] +Lγv′ [ρ̂] +Lγe[ρ̂], (B1)

with the Lindblad operators L having the decay timescales listed in
Table I. Lκ[ρ̂] describes photon decay within the picocavity with
κ ∼ 10–100 fs−1 being the fastest decay timescale in the problem.
Lγv [ρ̂] and Lγv′ [ρ̂] correspond to intramolecular vibration-assisted
relaxation within the potentials S0 to S1, respectively, for decay times
in the picosecond regime. The term Lγe[ρ̂] describes the decay of
the lowest electronic singlet excitation at rate γe. The corresponding
dissipators are given by
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Lκ[ρ̂] = (κ/2)(2âρ̂â† − â†âρ̂ − ρsâ†â),
Lγv [ρ̂] = (γv/2)(2∣1⟩⟨2∣ρ̂∣2⟩⟨1∣ − ∣2⟩⟨2∣ρ̂ − ρ̂∣2⟩⟨2∣),
Lγv′ [ρ̂] = (γv′/2)(2∣3⟩⟨4∣ρ̂∣4⟩⟨3∣ − ∣4⟩⟨4∣ρ̂ − ρ̂∣4⟩⟨4∣),

Lγe[ρ̂] = (γe/2)(2∣1⟩⟨3∣ρ̂∣3⟩⟨1∣ − ∣3⟩⟨3∣ρ̂ − ρ̂∣3⟩⟨3∣ + 2∣2⟩⟨3∣ρ̂∣3⟩⟨2∣ − ∣3⟩⟨3∣ρ̂ − ρ̂∣3⟩⟨3∣).

(B2)

In order to obtain Eq. (11), we focus on matrix elements ρ̂ that explicitly accounts for the presence or absence of the cavity photon and
introduce the notation ρmn

ij (t) = ⟨i; mc∣ρ̂(t)∣ j; nc⟩, where ∣i⟩ and ∣ j⟩ represent molecular states (i, j = 1, 2, 3, 4) and ∣mc⟩ and ∣nc⟩ represent cav-
ity Fock states with photon numbers mc and nc, respectively. In order to remove fast oscillations from the equations of motion, we define
slowly varying amplitudes σmn

ij for selected elements of the reduced density matrix as follows: σ00
13 = ρ00

13 e−iωpt , σ01
12 = e−iωptρ01

12, σ01
32 = ρ01

32, σ01
14

= e−i(ωp+ωs)tρ01
14, σ01

34 = e−iωstρ01
34, and σ11

24 = e−iωstρ11
24. In terms of these slowly varying amplitudes, we obtain from Eq. (B1) the following

equations of motion for the coherences:

σ̇00
13 = i(ω31 − ωp) σ00

13 − γ31 σ00
13 − iΩp(σ00

33 − σ00
11) + igcσ01

12 ,

σ̇01
12 = i(ω21 + ωc − ωp)σ01

12 − γ21σ01
12 − iΩpσ01

32 + igcσ00
13 + iΩsσ01

14 ,

σ̇01
32 = −i(ω32 − ωc)σ01

32 − γ32σ01
32 − igc(σ11

22 − σ00
33) − iΩpσ01

12 + iΩsσ01
34 ,

σ̇01
14 = i(ω41 + ωc − ωp − ωs)σ01

14 − γ41σ01
14 − iΩpσ01

34 + iΩsσ01
12 ,

σ̇01
34 = i(ω43 + ωc − ωs)σ01

34 − γ43σ01
34 − iΩpσ01

14 − igcσ11
24 + iΩsσ01

32 ,

σ̇11
24 = i(ω42 − ωs)σ11

24 − γ42σ11
24 − igcσ01

34 + iΩs(σ11
22 − σ11

44),

(B3)

where we introduced the decay rates γ31 = γe/2, γ21 = κ/2 + γv/2,
γ32 = κ/2 + γe/2, γ43 = κ/2 + γv′/2, γ42 = κ + γv′/2, and γ41 = γ43.
The homogeneous probe linewidth is γ31, and the Raman linewidth
is γ21.

In deriving Eq. (B3), we neglect the contribution of states
such as ∣2, 0c⟩, ∣3, 1c⟩, or ∣4, 0c⟩, which are neither populated nor
driven under our imposed assumptions of stationarity and weak
signal and probe driving. Accounting for such states would result,
for example, in the addition of an extra term proportional to σ11

13
in the right-hand side of equation (B3) for σ̇00

13, a term that can
be shown to vanish in the stationary limit. In other words, the
set of Eqs. (B3) does not correspond to a complete description
of the system coherences but can be considered as a minimal set
of equations of motion that can account for the nonlinear opti-
cal response of our system of interest. The homogeneous probe
susceptibility χp is then obtained by algebraically solving for the
steady-state probe coherence σ00

13(t →∞) from the coupled sys-
tem of equations (B3) using the relation χp = σ00

13(∞)/Ep, which
gives Eq. (11).

APPENDIX C: AVERAGING OVER ENERGY DISORDER:
THE LORENTZIAN TECHNIQUE

Assume that the energies of the states ∣1⟩, ∣2⟩, ∣3⟩, and ∣4⟩ fluc-
tuate as a result of structural disorder (random environment). Then,
the detunings Δ31 = ωp − ω3 + ω1 and Δ21 = ωp − ωc − ω2 + ω1 also
become random quantities. To find the disorder-averaged response,
we can numerically integrate Eq. (11) in the main text. How-
ever, here, we will explore an alternative route. Instead of using
a realistic Gaussian distribution for molecular levels, we average
the susceptibility over a Lorentzian distribution of the transition
frequencies,

PL(x) =
1
π

σx

(x − ⟨x⟩)2 + σ2
x

, (C1)

where ⟨x⟩ and σx are the mean value and the standard deviation of
the random variable x, respectively. The benefit of this approach is
that we will get exact analytical averages, which will allow us to gain
insight into the system dynamics in simple terms and help us make
meaningful choices of parameters. We show numerically that the
results of this procedure compare well with a Gaussian average [see
Fig. 6(b) in the main text].

The proposed technique is based on the observation that there
is a class of functions for which averaging over a Lorentzian distribu-
tion can be done instantly. Consider a function of a complex variable
f (z = Δ + iγ), where Δ and γ are real quantities; in what follows,
they will represent, respectively, a random detuning, over which we
average, and a constant homogeneous linewidth. We impose two
restrictions onto the function f (z): (1) it must decay faster than z
for ∣z∣→∞, and (2) it must not have poles in the upper half-plane.
Then, averaging of f (z) over a Lorentzian distribution (C1) PL(Δ)
of the detunings with the mean value ⟨Δ⟩ and a standard deviation σ
writes

⟨ f (Δ + iγ)⟩Δ = ∫
∞

−∞
dΔ f (Δ + iγ) 1

π
σ

(Δ − ⟨Δ⟩)2 + σ2

= ∫
∞

−∞
dΔ f (Δ + iγ) 1

2πi
[ 1

Δ − (⟨Δ⟩ + iσ)

− 1
Δ − (⟨Δ⟩ − iσ)]. (C2)

We can calculate this integral by closing the integration contour
through the upper half-plane of the complex plane. By assumption
(1), the integral over the half-circle vanishes, and by assumption (2)
the function f (z) has no poles inside the chosen integration contour
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so that the only pole that contributes to the integral is Δ = ⟨Δ⟩ + iσ,
originating from the Lorentzian distribution. The second integral,
∫ ∞−∞dΔ f (Δ + iγ)[Δ − (⟨Δ⟩ − iσ)]−1/2πi, thus vanishes. By calcu-
lating the residue at the only pole Δ = ⟨Δ⟩ + iσ in the first integral
and applying the Cauchy theorem, we get

⟨ f (Δ + iγ)⟩Δ = f (⟨Δ⟩ + i[γ + σ]). (C3)

In summary, as long as the function f (Δ + iγ) satisfies the
two criteria listed above, averaging over a Lorentzian distribution
consists in replacing the real part of the argument of the function
f (Δ + iγ) by its mean value, ⟨Δ⟩, and its imaginary part γ by γ + σ,
where σ is the width of the Lorentzian distribution.

Next, we notice that any susceptibility, being considered as a
function of the complex frequency, must satisfy the criteria (1) and
(2) since they are the same requirements that are imposed on all
the material functions, which satisfy the Kramers–Kronig relations.
Hence, averaging the susceptibility over Lorentzian distribution of
the transition frequencies (or the detunings) with the inhomoge-
neous broadening σ can be done by the replacement (C3). The result
will be the susceptibility with the fluctuating detuning replaced by
its average value and the homogeneous linewidth γ replaced by a
sum of the homogeneous and inhomogeneous broadenings, denoted
as Σ = γ + σ.

Finally, in our multi-level situation, we have to average the sus-
ceptibility over more than one Lorentzian distribution. To do this,
we repeat this procedure subsequently for each of the disordered
transitions. After each averaging, we get a new material function
that must satisfy the Kramers–Kronig relations and, consequently,
the criteria (1) and (2) so that we can keep repeating this procedure
until all the averagings are completed. The result can be symbolically
written as (here, Σi = γi + σi)

⟨χ(Δ1 + iγ1, . . . , ΔN + iγN)⟩Δ1 ,...,ΔN

= χ(⟨Δ1⟩ + iΣ1, . . . , ⟨ΔN⟩ + iΣN). (C4)
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