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Resumen

Nanojunturas ofrecen la posibilidad de estudiar las propiedades de transporte de materiales
nanométricos impulsados, como puntos cuánticos o moléculas individuales, unidos a cables eléctricos.
Recientes estudios experimentales y teóricos de estos sistemas ha aumentado nuestro entendimiento
de procesos de transporte cuántico, que subyace el comportamiento de los bloques de con-
strucción de circuitos electrónicos.
En esta Tesis, estudiamos el transporte de electrones en nanojunturas. Desarrollamos un modelo
en el cual la nanojuntura es tratada como un sistema cuántico abierto, con el material nanométrico
modelado como un arreglo conductor de sitios de electrones, interactuando con multiples ambi-
entes. Modelamos la dinámica de la nanojuntura con una ecuación maestra cuántica de Lind-
bland, que toma en consideración las interacciones que inducen transisiones de electrones en-
tre los autoestados del arreglo conductor. Resolviendo numéricamente la dinámica de la nano-
junctura en el estado estacionario, calculamos observables de la nanojuntura como la corriente
eléctrica a través de la nanojuntura mientras un voltaje de polarización es aplicado.
Nuestros resultados muestran que la dinámica de tuneleo de electrones explica picos de con-
ductancia a voltajes donde la condición de resonancia es satisfecha. Procesos como emisión
espontánea y relajación por fonones, explica el comportamiento de las poblaciones para un con-
junto de autoestados afectados por ellos, produciendo que sus contribuciones a la corriente en los
contactos a la izquierda y derecha sean diferentes. El transporte de electrones es dependiente de
la geometrı́a del arreglo conductor, pero alcanzando un valor similar de corriente de saturación.
Cuando una fuente de bombeo incoherente es aplicada al arreglo conductor, nuestros resultados
muestran los efectos de luz inducida por corriente y corriente inducida por luz, permitiendo inclu-
sive una corriente fotoeléctrica a configuraciones donde el voltaje de polarización es cero cuando
las tasas de tuneleo a la izquierda y derecha son diferentes, mientras que dirección de la corri-
ente fotoeléctrica inducida depende de si el arreglo conductor tiene electrones deslocalizados en
el conjunto de orbitales base o el excitados.

Palabras claves: Junturas moleculares, puntos cuánticos, sistemas cuánticos abiertos, trans-
port de electrones, ecuación maestra cuántica.
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Abstract

Nanojunctions offer the possibility of studying the transport properties of driven nano-sized ma-
terials, such quantum dots or single molecules, attached to electric leads. Recent experimental
and theoretical studies of these systems has increasing our understanding of quantum transport
phenomena, that underlie the behaviour of the building blocks of electronic circuits.
In this Thesis, we study the electron transport in nanojunctions. We develop a model in which
the nanojunction is treated as an open-quantum system, whit the nano-sized material modelled
as a conducting array of electron sites, interacting with multiple environments. We model the
nanojunction dynamics with a Lindbland quantum master equation, which takes into account the
interactions that induce electron transitions between the conducting array eigenstates. Solving
numerically the nanojunction dynamics in the steady state, we compute nanojuction observables
such as the electric current through the nanojunction while a bias voltage is applied.
Our results show that electron tunneling dynamics explains conductance peak at voltages where
a resonant condition is satisfied. Processes such as spontaneous emission or phonon relaxation,
explain the behaviour of populations on a set of eigenstates affected by them, producing that
their contribution to the current at the left-right contacts are different. Electron transport is de-
pendent on the conducting array geometries, but reaching similar saturation current value. When
an incoherent pumping source is applied to the conducting array, our results show the effects of
current-induced light and light-induced current, allowing even a photocurrent at zero bias config-
uration when the left-right tunneling rates are different, while the induced photocurrent direction
depends on whether the conducting array has delocalized electrons in the ground or the excited
orbital manifold.

Key words: Molecular junctions, quantum dots, open-quantum systems, electron transport,
quantum master equation.
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Chapter 1

Introduction

Based on the progress of different experimental techniques and theoretical methods, nano-sized
materials attached to leads, i.e. nanojuctions, have received substantial interest in the last decades
as a route for studying non-equilibrium many-body quantum physics at the nanoscale [Thoss and
Evers, 2018]. Experiments have shown that many of these nano-sized materials behave as “quan-
tum dots”, where the electrons are confined in the space and described by discrete quantum
states [Andergassen et al., 2010]. The quantum description of nanojunctions explains a plethora
of interesting transport phenomena, which could be the basis of future applications because of the
promised reduction of energy consumption, increasing capability and cheaper manufacturability of
electronic circuits [Sowa et al., 2017].
This Chapter gives a brief introduction to nanojunctions, focusing on quantum dots and molec-
ular junction devices, which are some of the most studied systems. Basic definitions are also
explained.

1.1 Quantum dots

Quantum dots are low-dimensional system where a few conduction electrons are trapped. The
name refers to devices where electrons are confined in the three spatial dimensions. The typical
size of quantum dot varies between 1 to 100 nanometers, which contains from 103 to 106 atoms
with equivalent number of electrons. The confinement produces that only few electrons are free,
while the other are bounded to the atomic nucleus [Tartakovskii, 2012,Kouwenhoven et al., 1997].
Because of the small size of quantum dots, these free electrons are distributed in discrete quantum
states and have a charging energy for adding a new electron, analogous to the ionization potential
in atoms. Therefore quantum dots has been considered as “artificial atoms”, while multiple cou-
pled quantum dots have been considered as “artificial molecules” [Kouwenhoven, 1995].
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Figure 1.1: (a) Addition energy as a function of electron number N of vertical quantum dot whit
diameters D (inset: vertical quantum dot structure composed semiconductor materials, where
could be applied a voltage V and a gate voltage); (b) coupled quantum dot in a lateral structure,
where ten independently tunable gates squeeze the electron gas formed by the GaAs/AlGaAs
heterostructure. Panels (a) and (b) adapted from [Tarucha et al., 1996] and [Jeong et al., 2001],
respectively.

In vertical quantum dots, structure formed by etched pillars of semiconductor materials where
the quasi-two-dimensional island of electron is squeezed by gate voltage applied through the
metallic side around the vertical structure (see inset in Fig. 1.1(a)), the current as a function
of gate voltage for small bias voltage has shown that the excess energy for charging the quantum
dot from N to N + 1 electrons follows the filling of 2D harmonic potential, where the big peaks at
N = 2, 6 and 12 represent the close shell structure, while the filling of the middle region is con-
sequence of alignment Hund’s rules, as is shown in Fig. 1.1(a), analogous to atomic ionization
spectra [Tarucha et al., 1996,Reimann and Manninen, 2002].
For studying electron transport, a common way to fabricate quantum dots or coupled quantum dots
is to deposit gates over a two-dimensional electron gas formed by a mesoscopic semiconductor
heterostructure (typically GaAs/AlGaAs), where the electrostatic effect of an applied voltage by the
gates tend to electrostatically create a bowl-like potential, which confines the electron in the lateral
direction [Reimann and Manninen, 2002], as in shown in Fig. 1.1(b). Therefore, the quantum dot is
limited to an small region of a semiconductor material of typical size of 100 nanometers [Kouwen-
hoven et al., 1997].

Quantum dots are used for studying many-body properties of a finite fermionic systems with
scope on areas such as chemistry, medicine and material science, based on the possibility of
register current and voltage leads as a function of electrostatic gates, dot geometry or magnetic
field [Tartakovskii, 2012,Reimann and Manninen, 2002].
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1.2 Molecular junctions

Figure 1.2: Techniques of molecular junction fabrication, where a bias voltage (V) is applied while
is measured a current (A); (a) Scanning tunneling microscope break junction; (b) Mechanically
controllable break junctions; and (c) Electromigration break junctions, which offer the posibility of
adding a gate voltage (Vg). Adapted from [Gehring et al., 2019].

Molecular junctions refers to system in which a single molecule, as small as one nanometer,
is placed between two metallic or semiconductor leads, measuring its transport properties [Evers
et al., 2020]. Its development has been framed in a field called molecular electronics, which studied
electronic and thermal transport in circuits composed by individual molecules, and has allowed to
answer basic questions and quantum phenomena [Scheer and Cuevas, 2017, Thoss and Evers,
2018].
Transport through single molecules was theoretically first proposed by Aviram and Ratner at 1974
[Aviram and Ratner, 1974], but it was not until 1997, based on techniques for the development
of metallic wires at the end of the 1980’s and the beginning of the 1990’s, in [Reed et al., 1997,
Scheer and Cuevas, 2017] the first experiment of single molecule were done, showing the rectifier
behaviour theoretically predicted. To date, the most frequent techniques to implement molecular
junctions are [Gehring et al., 2019,Evers et al., 2020]:

• Scanning tunneling microscope break junction: The tip of an STM is pushed repeatedly
on the metallic substrate, where molecules are deposited, and retracted, as is shown in
Fig. 1.2(a). The gap formed between the tip and the substrate is small enough to bridge
molecules, which are measured as the conductance as a function of distance while a bias
voltage is applied.
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• Mechanically controllable break junctions: A notched or lithographically fabricated metallic
wire is deposited on the top of a flexible substrate. The system is bending, using a three
point mechanism, until the wire breaks, as is shown in Fig. 1.2(b). The gap in controlled
relaxing the bending while evaporated single molecule in the environment could be attached
to the leads, measured as a non-zero current.

• Electromigration (EM) break junctions: A metal wire is deposited over a dielectric using
lithography techniques, where an applied voltage rampe creates by electromigration1 a gap
small enough to form a bridge for a single molecule, as is shown in Fig. 1.2(c). Molecules
could be deposited onto the wire before or after the electromigration. Unlike with the other
techniques, EM break junctions offer the posibility of adding a third gate, which add an elec-
trostatic effect by a gate voltage Vg.

1.3 Quantum transport phenomenology

In this thesis, we discuss the following quantum transport phenomena:

• Coulomb blockade: In a three gate system, when a gate voltage induces an electrostatic
change of the quantum dots or single molecule energies continuously, it could be charged by
the electrons tunneled from the leads, measured as a conductance peak at small bias volt-
age. Coulomb blockade occurs when the addition of a single-electron is avoided if the charg-
ing energy is greater than the thermal energy [Reimann and Manninen, 2002, Tartakovskii,
2012]. At the Coulomb blockade regime, the conductance peaks of a single electron tun-
neling looks as periodic oscillations, known as Coulomb oscillations [Kouwenhoven et al.,
1997], as is shown in Fig. 1.3(a).

• Kondo effect: At low temperatures is appreciate of some conductance peaks arise due to
the Coulomb interaction of opposite spins in the same state [Yoffe, 2001]. When the conduc-
tance is measured as a function of temperature in the middle region between the peaks, a
non-monotonic behaviour of resistance is produced, as is shown in Fig. 1.3(b), first reported
by Kondo in metals containing magnetic impurities [Kondo, 1964]. The Kondo effect has
been attributed to the strong correlations between spin electrons at low temperature, and
has been reported in molecular junctions and quantum dots. For bulk material, the Kondo
effect decreases the transport because it increases the electron scattering by the impurities,
while in quantum dots or molecular junctions it enhances the transport, because of the elec-
tron are transport only through these electron sites [Inoshita, 1998].

1The electromigration is the process where conducting electron driven a diffusion of atoms under large
current.
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Figure 1.3: Reported quantum transport phenomena; (a) conductance as a function of gate volt-
age at zero bias voltage for a quantum dot system, which shows Coulomb oscillations; (b) conduc-
tance as a function of gate voltage at different temperatures for a molecular junction system, which
shows a Kondo peak; (c) derived conductance as a function of gate voltage and bias voltage for a
molecular junction system, which shows Franck-Condon blockade; and (d) current-voltage curve
for a molecular junction system, which shows negative differential conductance. Panels (a), (b),
(c) and (d) adapted from [Kouwenhoven et al., 1991], [Park et al., 2002], [Burzurı́ et al., 2014]
and [Perrin et al., 2014], respectively.

• Franck-Condon blockade: When the electrons are strongly coupled to a vibrational mode,
the transport properties are affected. In the Franck-Condon blockade, single-electron tun-
neling is suppressed at low bias for any gate voltage, as is shown in Fig. 1.3(c), and has
been reported in molecular junctions [Burzurı́ et al., 2014] and carbon nanotube [Leturcq
et al., 2009].

• Negative differential conductance: Negative differential conductance corresponds to an ef-
fect where the electron current decreases while a bias voltage increases over a specific
range, as is shown in Fig. 1.3(d). It was first reported in p-n junctions and semiconductor
heterostructures, but also appears in quantum dots and molecular junction systems [Xue
et al., 1999]. This has been attributed to narrow feature of the density of states of the tip
apex atom in STM [Xue et al., 1999], conformational changes, spin blockade, phonon block-
ade or suppressed resonant transport [Perrin et al., 2014].
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Chapter 2

Nanojunction description

Figure 2.1: Scheme
of (a) macroscopic
metal; and (b)
molecular junction.
Panel (b) adapted
from [Nitzan and
Ratner, 2003].

In macroscopic metals, the conductance G follows the Ohm law according to

G = σ
S

L
, (2.1)

where σ is the conductivity, S is the traversal area and L is the length, as is shown in Fig. 2.1(a).
Nevertheless, in nanojunctions, because of the size of the attached material, for example the single
molecule in Fig. 2.1(b), the electron transport happens in the quantum regime, which produces, in
general, non-Ohmic behaviour [Scheer and Cuevas, 2017]. It means, this kind of systems need to
be described as a quantum system.
This Chapter develops a quantum description of nanojunctions, based on the density operator
approach and the second quantization formalism. The nanojunction is modelled, capturing or
ignoring some electron transfer processes.

2.1 Density operator formalism

In this work the system is described by a density operator, because of the system dynamics is re-
duced to a compact and reduced number of equations for many-particle systems and macroscopic
observables [Breuer et al., 2002,Nitzan, 2006].
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2.1.1 Quantum-mechanical systems

A quantum-mechanical system is described by a wave function |Ψ(t)⟩, which evolves through the
Schrödinger equation (ℏ = 1),

d

dt
|Ψ(t)⟩ = −iĤ |Ψ(t)⟩ , (2.2)

where i =
√
−1 is the imaginary unit and Ĥ is the system Hamiltonian. Writing the Hamiltonian Ĥ

in diagonal form as
Ĥ |ϕn⟩ = ωn |ϕn⟩ , (2.3)

where {|ϕn⟩} are the system eigenstates (or eigenbasis) and {ωn} are the eigenenergies (or spec-
trum). The wave function of the system |Ψ(t)⟩ can be written as

|Ψ(t)⟩ =
∑
n

Cn(t) |ϕn⟩ , Cn(t) = ⟨ϕn |Ψ(t)⟩ , (2.4)

where the time-dependent coefficients, Cn(t), satisfy
∑

n |Cn(t)|2 = 1 due the normalization of the
wave function.

The average of any physical observable of the system associated to an operator Â, based on
the system wave function in Eq. (2.4), is computed as a function of time as

⟨Â⟩ = ⟨Ψ(t)| Â |Ψ(t)⟩ =
∑
n,m

Cn(t)C
∗
m(t)Am,n ≡

∑
n,m

ρn,m(t)Am,n, (2.5)

where Am,n = ⟨ϕm| Â |ϕn⟩ is an element of Â and ρn,m(t) = ⟨ϕn| ρ̂(t) |ϕm⟩ is an element of the
system density operator ρ̂, defined as

ρ̂(t) = |Ψ(t)⟩ ⟨Ψ(t)| , (2.6)

which stores information about the system. With the density operator in Eq. (2.6), the average of
the observable Â in Eq. (2.5) is reduced to

⟨Â⟩ = Tr
[
ρ̂(t)Â

]
, (2.7)

where Tr correspond to a trace over the system space. The results above were derived using the
eigenbasis {ϕn}, but is valid for any basis in the system space.

Based on the Schrödinger equation in Eq.(2.2) and the density operator in Eq. (2.6), the evolu-
tion of the density operator is given by the Liouville’s equation,

d

dt
ρ̂(t) = −i

[
Ĥ, ρ̂(t)

]
, (2.8)

where
[
Ĥ, ρ̂(t)

]
= Ĥρ̂(t)− ρ̂(t)Ĥ is the commutator.

Therefore, the density operator and the Liouville’s equation are an alternative way for describing
quantum-mechanical systems, while the Eq. (2.7) is a way for computing average of observables.
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2.1.2 Populations and coherences

For any density operator ρ̂, exist a basis {|ψα⟩} where it takes a diagonal form, it is,

ρ̂ =
∑
α

ρα |ψα⟩ ⟨ψα| , (2.9)

where ρα correspond to the system probability (or population) at the state |ψα⟩. For representing
the density operator in other basis, for example the Hamiltonian basis {|ϕn⟩} (see Eq. (2.3)), is
used a change of basis according to

|ψα⟩ =
∑
n

aα,n |ϕn⟩ , aα,n = ⟨ϕn |ψα⟩ , (2.10)

where aα,n are time-independent coefficients. Applying the change of basis in Eq. (2.10), the
density operator in Eq. (2.9) becomes

ρ̂ =
∑
n,m

ρn,m |ϕn⟩ ⟨ϕm| , ρn,m =
∑
α

ραaα,na
∗
α,m, (2.11)

where the terms ρn,m are know as coherences when n ̸= m or populations when n = m.

2.1.3 Reduced density operators

Consider a system composed by two sub-systems A and B. The general form of writing the system
density operator ρ̂ in terms of the basis {|a⟩} and {|b⟩} for A and B sub-systems, respectively, is
according to

ρ̂ =
∑
a,b

ρab,a,b, |ab⟩ ⟨a,b,| , (2.12)

where ρab,a,b, = ⟨ab| ρ̂ |a,b,⟩ is an element of the density operator and the state |ab⟩ = |a⟩ ⊗ |b⟩ is
constructed as a tensor product (⊗) between the state |a⟩ and |b⟩. For an observable associated
to an operator Â in the sub-system A (see Eq. (2.7)),

⟨Â⟩ = Tr
[
ρ̂Â
]
=
∑
ab

∑
a,b,

ρab,a,b, ⟨a,b,| Â |ab⟩ , (2.13)

where Tr is the trace over the sub-systems A and B. Because Â belongs only in the space of the
sub-system A, the term ⟨a,b,| Â |ab⟩ is reduced to ⟨a,| Â |a⟩ δb,b, . Therefore, the observable in Eq.
(2.13) is reduced to

⟨Â⟩ =
∑
ab

∑
a,

ρab,a,b ⟨a,| Â |a⟩ ≡ TrA

[
ρ̂AÂ

]
, (2.14)

where TrA is the trace over the sub-system A, and is defined the density operator of the sub-
system A,

ρ̂A = TrB [ρ̂], (2.15)

as a reduced density operator, applying the trace, TrB , over the system density operator ρ̂.
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In the case that both sub-systems A and B are independent (uncorrelated), the density operator
of the system could be written as a tensorial product,

ρ̂ = ρ̂A ⊗ ρ̂B , (2.16)

of,
ρ̂A =

∑
a,a,

ρa,a, |a⟩ ⟨a,| , ρ̂B =
∑
b,b,

ρb,b, |b⟩ ⟨b,| , (2.17)

the density operators in sub-systems A and B, respectively.

2.1.4 Thermal-equilibrium density operators

The classical density-distribution function for an statistical ensemble has a correspondence with
the density operator when we compute the average of observables. Therefore, as expected, the
density operator ρ̂ could represent statistical ensembles [Greiner et al., 2012,Nolting et al., 2018].

The evolution of an observable ⟨Â⟩, based on the definition in Eq. (2.7) and Liouville’s equation
(2.8), is given by

d

dt
⟨Â⟩ = −i⟨[Ĥ, Â]⟩. (2.18)

No matter the form of Â, for obtaining an stationary ensemble, it is, where the average observables
does not evolve, is necessary

d

dt
⟨Â⟩ = 0 −→ [Ĥ, ρ̂] = 0, (2.19)

which imposes that ρ̂ commute with Ĥ. The restriction in Eq. (2.19) could be satisfied when the
density operator ρ̂ = ρ̂(Ĥ) is a function of Ĥ, which happens for the following ensembles.

Canonical density operator

For a system at fixed temperature T , volume V and number of particle N , the canonical ensemble
describes the system through the density operator

ρ̂Can =
e−βĤ

Z
, Z = Tr[e−βĤ], (2.20)

where β = (kBT )
−1 with kB the Boltzmann constant, and Z is the canonical partition function.

This definition ensures the condition of stationary ensemble in Eq. (2.19).

Grand-canonical density operator

For a system at fixed temperature T , volume V and chemical potential µ, the grand-canonical
ensemble describes the system through density operator

ρ̂GCan =
e−β(Ĥ−µN̂ )

Z
, Z = Tr[e−β(Ĥ−µN̂ )], (2.21)
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where N̂ is the number operator and Z is the grand-canonical partition function. This definition
ensures the condition of stationary ensemble in Eq. (2.19).

2.2 Model nanojuction

Figure 2.2: Model of nanojunction where
a nano-sized material is placed between
two leads. The nano-sized material is
modelled as a conducting array based
on N sites connected between them by
a hopping rate tα between the local en-
ergy levels εα, and Coulomb interaction
U appears for electrons at the same site.
When a bias voltage is applied, the split
of the lead chemical potentials, µL and
µR, induces stationary electron currents
at the left and right contacts, ĪL and ĪR.

The modelled nanojunction, shown in Fig. 2.2, is described by the Hamiltonian

Ĥ = ĤC + ĤE + ĤI , (2.22)

where the nano-sized material described by ĤC , interacts with an environment described by ĤE ,
through a interaction Hamiltonian ĤI . Because of the nano-sized material and the environment
are composed by many-particles systems, an easy and compact way for describing them is use
the second quantization theory, where the Hamiltonians are written in terms creation and annihi-
lation operators [Bruus and Flensberg, 2004,Mahan, 2013].

2.2.1 Second quantization theory

Any N-particle system could be described in Fock space using the number eigenstates

|n1, n2, ...⟩ ,
∑
α

nα = N, (2.23)

where the number nα in the Fock state represents the number of particles in the state (orbital) ϕα
of the system, while the right condition ensures the system contains N particles. The Fock states
{|n1, n2, ...⟩} define an orthonormal basis, i.e.,

⟨n1, n2, ...|n,1, n
,
2, ...⟩ = δn1,n

,
1
δn2,n

,
2
..., (2.24)

where δ is a Kronecker delta.
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In second quantization n̂α is the local number operator of particles in the state ϕα, of which a
Fock state in an eigenstate, i.e.

n̂α |..., nα−1, nα, nα+1...⟩ = nα |..., nα−1, nα, nα+1...⟩ , (2.25)

where nα is the eigenvalue. Based on the local number operators in Eq. (2.25), the total number
operator is given by

N̂ =
∑
α

n̂α. (2.26)

Bosons

For bosons, the number of particles per state, nα = {0, 1, 2, ...}, is restricted to non-negative
numbers, while the local number operator is defined as n̂α = â†αâα, where the operators âα and
â†α annihilates and creates, respectively, a boson in the state α, according to

âα |..., nα−1, nα, nα+1...⟩ =
√
nα |..., nα−1, nα − 1, nα+1, ...⟩ ,

â†α |...nα−1, nα, nα+1, ...⟩ =
√
nα + 1 |..., nα−1, nα + 1, nα+1, ...⟩ ,

(2.27)

which, because of the symmetry permutation of the boson-wave function, respects the commuta-
tion rules

[âα, âβ ] = 0,
[
â†α, â

†
β

]
= 0,

[
âα, â

†
β

]
= δα,β , (2.28)

Fermions

For Fermions, the number of particles per state, nα = {0, 1}, is restricted to that two values, while
the local number operator is defined as n̂α = ĉ†αĉα, where the operators ĉα and ĉ†α annihilates and
creates, respectively, a fermion in the state α, according to

ĉα |..., nα−1, 0α, nα+1, ...⟩ = 0 = ĉ†α |..., nα−1, 1α, nα+1, ...⟩ ,

ĉα |..., nα−1, 1α, nα+1, ...⟩ = |..., nα−1, 0α, nα+1, ...⟩ ,

ĉ†α |..., nα−1, 0α, nα+1, ...⟩ = |..., nα−1, 1α, nα+1, ...⟩ ,

(2.29)

which, because of the anti-symmetry permutation in the fermion-wave function, respects the anti-
commutation rules

{ĉα, ĉβ} = 0, {ĉ†α, ĉ
†
β} = 0, {ĉα, ĉ†β} = δα,β , (2.30)

where {ĉα, ĉβ} = ĉαĉβ + ĉβ ĉα is the anticommutator.

Operators

In a N -particle system, a one-particle operator Ô1 and a two-particle operator Ô2 have a form

Ô1 =

N∑
s=1

T̂s, Ô2 =

N∑
s̸=s,

V̂s,s, , (2.31)
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where the operator T̂s ≡ T (r⃗s) acts over the particle s at position r⃗s, while the operator V̂s,s, ≡
V (r⃗s, r⃗s,) acts over the particle s and s, at positions r⃗s and r⃗s, respectively.
In second quantization, the operators in Eq. (2.31) could be written as

Ô1 =
∑
α,α,

Tαα, û†αûα, , Tαα, =

∫
ϕ∗α(r⃗)T (r⃗)ϕα,(r⃗)dr⃗,

Ô2 =
∑

α,α,,β,β,

Vαα,ββ, û†αû
†
α, ûβ, ûβ , Vαα,ββ, =

∫
ϕ∗α(r⃗

,)ϕ∗α,(r⃗,)V (r⃗, r⃗,)ϕβ(r⃗)ϕβ,(r⃗)dr⃗dr⃗,,

(2.32)

where û†α and ûα are the creation and annihilation operators, respectively, of either fermions or
bosons at the state ϕα.

2.2.2 Conducting array

The nano-sized material, either quantum dots or single molecules, attached to the leads is mod-
elled as a conducting array of N sites and α local energy levels per site, as shown in Fig. 2.2.
An isolated electron in site i and local energy level α is described by the atomic-like orbital wave
function ϕi,α and has a (local) energy εiα. For a system of S interacting electrons with equal mass
me and charge e in the conducting array, the Hamiltonian is

ĤC =
∑
s∈S

(
p⃗s

2

2me
+ V (r⃗s)

)
+

1

2

∑
s ̸=s,∈S

e2

|r⃗s − r⃗s,|
, (2.33)

where the first summation correspond to the kinetic energy and the ion-core potential of an isolated
electron s, and the second summation corresponds to the Coulomb repulsion between electrons s
and s,.
The conducting array Hamiltonian in Eq. (2.33) in second quantization, is described by fermionic
creation and annihilation operators, ĉ†i,α and ĉi,α, respectively, for electrons in site i and orbital ϕi,α
in the form [Hubbard, 1963,Hubbard, 1967]1

ĤC =
∑
i,j

∑
α,α,

T ij
αα, ĉ

†
i,αĉj,α, +

1

2

∑
i,j,k,l

∑
α,α,,β,β,

Iαα
,ββ,

ijkl ĉ†i,αĉ
†
j,α, ĉl,β, ĉk,β , (2.34)

where

T ij
αα, =

∫
ϕ∗i,α(r⃗)

(
p⃗2

2me
+ V (r⃗)

)
ϕj,α,(r⃗)dr⃗,

Iijklαα,ββ, =

∫
ϕ∗i,α(r⃗)ϕ

∗
j,α,(r⃗,)

(
e2

|r⃗ − r⃗,|

)
ϕk,β(r⃗)ϕl,β,(r⃗,)dr⃗dr⃗,,

(2.35)

1In the following, the spin degree of freedom of electron is not considered, but it could be taken into
account by adding an index σ = {↓, ↑} in the fermionic operators.
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are the hopping and the coulomb interaction integrals, respectively. The hopping and the coulomb
integrals in Eq. (2.35) can be approximated to

T ij
αα, = εiαδα,α,δi,j + ti,jα δα,α,(δj,i+1 + δi,j+1),

Iijklαα,ββ, = U i
α,α,δj,iδl,iδk,jδβ,,αδβ,α, ,

(2.36)

where the hopping integral describes the local energy εiα and electron hopping between the site i
and i+1 in the local level ϕα at rate ti,i+1

α , while the coulomb integral describes repulsion between
electrons in the same site i at different local levels ϕα and ϕα, with energy U i

α,α, . Using the
approximation in Eq.(2.36), the conducting array Hamiltonian in Eq. (2.34) is reduced to

ĤC =
∑
i

∑
α

εαĉ
†
i,αĉi,α +

U

2

∑
α, ̸=α

ĉ†i,α, ĉi,α, ĉ†i,αĉi,α +
∑
α

tα

(
ĉ†i,αĉi+1,α + ĉ†i+1,αĉi,α

) , (2.37)

where was considered equals local energies, εiα ≡ εα, Coulomb energies, U i
α,α, ≡ U , and hopping

rates, ti,i+1
α ≡ tα. In the case of circular conducting array, the overlap between the site i = 1

and the site i = N produces a non-zero hopping constant tα between these sites, subject to the
periodic boundary condition N + 1 = 1.

The conducting array Hamiltonian in Eq. (2.37) could be written in diagonal form as

ĤC =
∑
n

ωn |en⟩ ⟨en| (2.38)

where {ωn} is the conducting array spectrum and {|en⟩} are the array eigenstates. In the case
of N sites and α local energy levels, the number of eigenstates will be 2N×α, which increases
exponentially. Is expected the hopping rate tα produces eigenstates which looks as a linear com-
bination of electrons at different sites of the conducting array (delocalization), which induces the
conducting array to behave as a large single site [Yoffe, 2001].
Despite the approximation done for the conducting array Hamiltonian in Eq. (2.37), in principle
other approximations could be done, because of the nanojunction dynamics (discussed in Chap-
ter 3) considers the array Hamiltonian in diagonal form as Eq. (2.38), which ensures that internal
interactions are taken into account [Pedersen and Wacker, 2005,Esposito and Galperin, 2009].

2.2.3 Environment

The environment is composed by different reservoirs: the leads ({L,R}), the radiation (rad) and
thermalized phonons (ph), described generically as a sum of individual Hamiltonian Ĥλ,

ĤE =
∑

λ={L,R,rad,ph}

Ĥλ. (2.39)

of the reservoir λ. In thermal equilibrium, the reservoirs are described by the thermal density
operators discussed in Sec. 2.1.4.
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Leads

Considering a lead l = {L,R} as an electron-gas reservoir, it means free electrons, with well
defined temperature T , volume V and chemical potential µl, the Hamiltonian is

Ĥl =
∑
s

p⃗s
2

2me
, (2.40)

with eigenfunctions and energies

ϕk⃗(r⃗) =
1√
V
eik⃗·r⃗, ωk⃗ =

k⃗2

2me
, (2.41)

respectively. In the second quantization theory, the lead Hamiltonian in Eq. (2.40), using the Eq.
(2.32) and Eq. (2.41), becomes

Ĥl =
∑
k⃗

ωk⃗ ĉ
†
l,⃗k
ĉl,⃗k, (2.42)

where ĉl,⃗k (ĉ†
l,⃗k

) annihilates (creates) one electron in the lead l in the mode k⃗.

The grand-canonical density operator and Hamiltonian for the leads are given by

ρ̂l =
exp

(
−β0(Ĥl − µlN̂l)

)
Trl

[
exp

(
−β0(Ĥl − µlN̂l)

)] , Ĥl =
∑
k

ωk ĉ
†
l,k ĉl,k, N̂l =

∑
k

ĉ†l,k ĉl,k, (2.43)

where β0 = (kBT0)
−1 at temperature T0, µl the chemical potential, Ĥl the number operator and

Trl is the trace over the degrees of freedom of the lead l.

Radiation

Maxwell’s equations describe radiation in free space by the electric field E⃗ and the magnetic field
B⃗. In the Coulomb gauge, both fields are computed through the vector potential A⃗ as

E⃗ = −1

c

∂A⃗

∂t
, B⃗ = ∇⃗ × A⃗, (2.44)

where c is the speed of light.
Considering radiation in homogeneous space with lineal polarization ϵ⃗k in a volume V , the vector
potential is reduced to [Nitzan, 2006]

ˆ⃗
A = c

∑
k⃗

√
2π

ϵ0V ωk⃗

(
ârad,⃗k exp

(
i(k⃗ · r⃗ − ωk⃗t)

)
+ â†

rad,⃗k
exp

(
−i(k⃗ · r⃗ − ωk⃗t)

))
ϵ⃗k, (2.45)

where ϵ0 is the permittivity of free space, and ârad,⃗k and â†
rad,⃗k

are bosonic creation and annihilation

operators, respectively, of photons in the mode k⃗. Based on the fields defined in Eq. (2.44) and
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the potential vector in Eq. (2.45), the energy of radiation is given by

Ĥrad =
∑
k⃗

ωk⃗

(
â†
rad,⃗k

ârad,⃗k +
1

2

)
, (2.46)

where ωk⃗ is the energy of the mode k⃗.

The canonical-density operator and Hamiltonian for radiation are given by

ρ̂rad =
exp

(
−β0Ĥrad

)
Trrad

[
exp

(
−β0Ĥrad

)] , Ĥrad =
∑
p

ωpâ
†
rad,pârad,p, (2.47)

where Trrad is the trace over the degrees of freedom of radiation.

Phonons

Considering a group of N atomic-ion cores with equal mass mN at the site of the conducting array.
If they are connected by a elastic constant K, they are be described by the Hamiltonian [Scheer
and Cuevas, 2017]

Ĥph =
∑
i

P 2
i

2mN
+
K

2

∑
i

(Ri −Ri−1)
2, (2.48)

where Pi and Ri are the momentum and the position of the i-th atomic-ion core. Applying a Fourier
transform, the canonical variables Ri and Pi becomes

Rk =
1√
N

∑
j

Rj exp (−ikaj) , Pk =
1√
N

∑
j

Pj exp (ikaj) , (2.49)

where a is the distance between cores and the commutation relation [Rk, Pk] = iδk,k, is preserved
also in the k-space.
Based on the Fourier transform in Eq. (2.49), the phonon Hamiltonian in Eq. (2.48) could be
written as

Ĥph =
∑
k

1

2mN
PkP−k +

∑
k

mNωk

2
RkR−k, ωk =

4K

mN
sin2

(
ka

2

)
, (2.50)

where ωk is the energy in the mode k. Defining

âph,k =

√
mNωk

2

(
Rk +

i

mNωk
P−k

)
, â†ph,k =

√
mNωk

2

(
R−k − i

mNωk
Pk

)
, (2.51)

the creation and annihilation operators, respectively, of phonon in the mode k, the phonon Hamil-
tonian in Eq. (2.50) could be easily written in the second quantization theory as

Ĥph =
∑
k

ωk

(
â†ph,kâph,k +

1

2

)
. (2.52)
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The canonical-density operator and Hamiltonian for atomic-ion cores are given by,

ρ̂ph =
exp

(
−β0Ĥph

)
Trph

[
exp

(
−β0Ĥph

)] , Ĥph =
∑
q

ωqâ
†
ph,qâph,q, (2.53)

where Trph is the trace over the degrees of freedom of the phonons ph.

2.2.4 Interactions

All the reservoirs interact with the conducting array, defining a total interaction,

ĤI =
∑

λ={L,R,rad,ph}

Ĥλ
I , (2.54)

as a sum of individual system-reservoir interaction Ĥλ
I of the reservoir λ and the conducting array.

Through the interactions, the thermodynamic parameters of the reservoirs induces non-equilibrium
dynamics in the conducting array.

Lead tunneling

When the lead l = {L,R} is next to the conducting array, the overlapping of the electronic wave
functions produce electron transfer between them, described by the Hamiltonian

Ĥl
I =

∑
i,α,k

(
V αk
il ĉ†i,αĉl,k + (V αk

il )∗ĉ†l,k ĉi,α

)
, (2.55)

as a tunneling process [Scheer and Cuevas, 2017]. V αk
il is the coupling constant between an

electron in the lead l in the mode k and an electron in the conducting array site i and local energy
level α. We ignores energy (exciton) transfer with the leads, which is an operator of fourth order
in fermion operators and acts as a non-radiative de-excitation of the conducting array through the
creation of a electron-hole pair in the leads [Galperin and Nitzan, 2005,Galperin and Nitzan, 2006].
We assume that the coupling constant,

V αk
il = u

(l)
i V

(l)
k , (2.56)

could be divided in a conducting array term, u(l)i ∈ R, and a reservoir part, V (l)
k ∈ C.

With the coupling approximation in Eq. (2.56), the interaction Hamiltonian in Eq. (2.55) becomes

Ĥl
I =

∑
i,α,k

u
(l)
i

(
V

(l)
k ĉ†i,αĉl,k + V

(l)∗
k ĉ†l,k ĉi,α

)
, (2.57)

where we modelled the conducting array dependence,u(l)i , as a Kronecker delta function whit
value 1 when the conducting array site i is the nearest site to the lead l, because it is where the
coupling is highest.
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Light-matter interaction

The interaction between the radiation and the conducting array, up to the dipolar approximation, is
given by [Nitzan, 2006]

Ĥrad
I = −

∑
s

ˆ⃗µs ·
ˆ⃗
E(r⃗s), (2.58)

where ˆ⃗µs is the dipole operator of an electron s of the conducting array and ˆ⃗
E(r⃗s) is the electric field

in the Schrödinger picture at the position r⃗s of an electron s. Considering the radiation wavelength
greater than the conducting array length, the electric field ˆ⃗

E(r⃗ = 0) is spatially constant, defining
r⃗ = 0 at the beginning of the conducting array.
In second quantization, applying the Eq. (2.32), the dipole operator could be written as,

∑
s

ˆ⃗µs =
∑
i

∑
α ̸=α,

µ⃗αα,

i ĉ†i,αĉi,α, , µ⃗αα,

i =

∫
ϕ∗i,α(r⃗)

ˆ⃗µ(r⃗)ϕi,α,(r⃗)dr⃗, (2.59)

where µ⃗αα,

i is the dipole integral. In Eq. (2.59) we have considered only dipole transitions between
the different levels at the same site, ignoring excimer formation2 and permanent dipole moments.
Considering the dipole operator in Eq. (2.59) and the electric field defined in Eq. (2.44), the
interaction Hamiltonian in Eq. (2.58), under the rotating-wave approximation (RWA), becomes,

Ĥrad
I =

∑
i,α>α,,p

u
(rad)
i

(
V (rad)
p ĉ†i,αĉi,α, ârad,p + V (rad)∗

p ĉ†i,α, ĉi,αâ
†
rad,p

)
, (2.60)

where we has assumed the dipole operator is aligned with the electric field polarization and the
coupling constant

u
(rad)
i V (rad)

p = −i
√

2πωp

ϵ0V
µαα,

i . (2.61)

This could be divided into a conducting array term, u(rad)i ∈ R, and a reservoir part, V (rad)
p ∈ C.

We model the conducting array dependence, u(rad)i = 1, as a constant value for all the conducting
array sites, because are considered the dipoles operators equals for all the conducting array sites.

Electron-phonon interaction

The interaction between electrons in the conducting array and the atomic-ion cores is described
by the Hamiltonian

Ĥph
I =

∑
s,i

V (rs −Ri), (2.62)

where V (rs − Ri) is a potential of an electron s and an atomic-ion core i. Expanding the poten-
tial respect to the equilibrium position R0

i of the atomic-ion cores, up to first order in the Taylor
expansion the Hamiltonian interaction in Eq. (2.62) becomes [Mahan, 2013]

Ĥph
I = −

∑
s,i

Qi
∂

∂Ri
V (rs −Ri)|Ri=R0

i
,

Qi = Ri −R0
i =

1√
N

∑
q

√
1

2mNωq

(
âph,q + â†ph,−q

)
exp

(
iqR0

i

)
,

(2.63)

2Electron transfer between different conducting array sites.
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where Qi is the displacement operator in terms of phonon creation and annihilation operator de-
fined in Eq. (2.51).
Writing the potential V (rs −Rn) in Fourier transform space,

V (rs −Ri) =
1√
N

∑
q

Vq exp (iq(rs −Ri)) , (2.64)

the Hamiltonian in Eq. (2.63) reduces to

Ĥph
I =

∑
s,q

gs,q

(
âph,q + â†ph,−q

)
, gs,q = i

√
1

2mNωq
qVq exp (iqrs) , (2.65)

where gs,q is a one-electron operator, which, written in second quantization theory using Eq. (2.32),
becomes ∑

s

gs,q =
∑
i

∑
α

u
(ph)
i V (ph)

q ĉ†i,αĉi,α, u
(ph)
i V (ph)

q =

∫
ϕ∗i,α(r⃗)gqϕi,α(r⃗)dr⃗, (2.66)

where it has been assumed that the integral gives a non-zero coupling constant, u(ph)i V
(ph)
q , only

for electron in the same site and energy level [Gauger et al., 2008].
With the coupling constant approximation in Eq. (2.66), the Hamiltonian interaction in Eq. (2.65)
is reduced to

Ĥph
I =

∑
i,α,q

u
(ph)
i V (ph)

q ĉ†i,αĉi,α

(
âph,q + â†ph,q

)
, (2.67)

where we model the conducting array dependence as u
(ph)
i = (−1)i+1, because it takes into

account a relative pi-phase between conducting array sites [Sowa et al., 2017].
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Chapter 3

Nanojunction dynamics

Many theoretical methods has been developed for treating the dynamics of non-equilibrium sys-
tems such as the nanojuctions described in Sec. 2.2. Considering the non-equilibrium system
as a open-quantum system, the density operator formalism, discussed in Sec. 2.1, can be used
to derive a quantum master equation for the system dynamics under a set of approximations and
assumptions. Although quantum master equations do not provide exact dynamics, they have been
applied to chemical and physical problems due its intuitive results and easy implementation.
This Chapter discusses the nanojunction dynamics though a quantum master equation, which
captures the interaction a conducting array with the environment as transition between conducting
array eigenstates induced by the individual reservoirs. Based on the nanojunction dynamics, we
derive an expression for the electron current through the molecule, and the implementation for
obtaining the typical current-voltage curve for characterizing the electron transport in nanojuntions
is discussed.

3.1 Quantum master equation

The model considers the nanojunction as an open-quantum system, where the conducting array is
a quantum system that interacts with an environment composed by different reservoirs, as shown
in Fig. 3.1(a). The nanojunction is described by the total density operator ρ̂, containing information
about the conducting array, through the reduced density operator ρ̂C = TrE [ρ̂], and the environ-
ment, through the reduced density operator ρ̂E = TrC [ρ̂].

Considering weak system-reservoir coupling, the interaction Hamiltonian ĤI is considered in
perturbation theory for the nanojunction dynamics. It means that the environment and conducting
array evolve as uncorrelated sub-systems. Considering also that the environment is bigger than
the conducting array (Born approximation), the total density operator is

ρ̂(t) = ρ̂C(t)⊗ ρ̂E , (3.1)
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Figure 3.1: (a) Open-quantum system picture, where the conducting array, described by (ĤC , ρ̂C),
interact with a reservoir λ, described by (Ĥλ, ρ̂λ, µλ, T0), through an interaction Hamiltonian Ĥλ

I .
(b) Diagram of electron transitions induced by a reservoir λ at effective transfer rate κ

(n,m)
λ for

|em⟩ → |en⟩ eigenstate transition and effective transfer rate κ̃
(n,m)
λ for |en⟩ → |em⟩ eigenstate

transition.

i.e. looks as a tensor product of the conducting array density operator, ρ̂C(t), which evolves as a
function of time, and the environment density operator,

ρ̂E = ρ̂L ⊗ ρ̂R ⊗ ρ̂rad ⊗ ρ̂ph, (3.2)

which is composed by thermal density operators for all the reservoirs, as discussed in Sec. 2.2.3.
The Liouville equation for the total density operator ρ̂ in Eq. (2.8) is reduced to the Redfield
equation (derivation in Appendix A)

d

dt
ρ̂C(t) = −i

[
ĤC , ρ̂C(t)

]
−
∫ ∞

0

dτ TrE

[
ĤI ,

[
Ĥ,

I(−τ), ρ̂C(t)⊗ ρ̂E

]]
, (3.3)

for the conducting array dynamics, where Ĥ,
I(−τ) is the interaction Hamiltonian in the interaction

picture at time −τ . It was also considered the Markov approximation, because of the reservoir
correlations decay faster on time than the conducting array dynamics and we consider the envi-
ronment at room temperature [Timm, 2008].

Given the interaction Hamiltonian ĤI in Eq. (2.54) and the environment density operators ρ̂E in
Eq. (3.2), the Redfield equation in Eq. (3.3) becomes the a Lindbland quantum master equation
(derivation in Appendix B)

d

dt
ρ̂C(t) = −i

[
ĤC , ρ̂C(t)

]
+
∑
n,m

(
κ(n,m)Ln,m [ρ̂C(t)] + κ̃(n,m)Lm,n [ρ̂C(t)]

)
, (3.4)

whit decay rates defined as

κ(n,m) =
∑

λ={L,R,rad,ph}

κ
(n,m)
λ , κ̃(n,m) =

∑
λ={L,R,rad,ph}

κ̃
(n,m)
λ , (3.5)

in terms of the effective transfer rates κ(n,m)
λ and κ̃

(n,m)
λ (details in Table B.1), and the Lindblad

superoperators read
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Ln,m [ρ̂C(t)] = L̂n,mρ̂C(t)L̂
†
n,m − 1

2
{L̂†

n,mL̂n,m, ρ̂C(t)}, L̂n,m = |en⟩ ⟨em| , (3.6)

which guarantee the positive time evolution of density operator, i.e., the system conserves the
probabilities during the evolution [Breuer et al., 2002].

The model describes the open-quantum system dynamics where the conducting array interacts
with a reservoir λ as electron transitions are induced by the reservoir at effective transfer rates
κ
(n,m)
λ for transition between conducting array eigenstates |em⟩ → |en⟩ and at effective transfer

rate κ̃
(n,m)
λ for transition between conducting array eigenstates |en⟩ → |em⟩, as is shown in Fig.

3.1(b). The transition between eigenstates is related with the addition of subtraction of electrons
when it is induced by the leads, unlike when it is induced by radiation or thermalized phonons,
which conserves the number of electrons.
The effective transfer rates, κ(n,m)

λ and κ̃(n,m)
λ , depend on the conducting array transition frequency

ωn,m = ωn − ωm, and the reservoir thermodynamics parameters, as temperature T0 and chemical
potential µλ. The reservoir λ will only induce transition between eigenstates |en⟩ ↔ |em⟩ provided
that

| ⟨en| Ŝλ |em⟩ |2 ̸= 0, (3.7)

where Ŝλ, defined in Table B.1, is a conducting array operator for a given reservoir λ, which gives
the selection rules for reservoir-induced transitions.

Quantum master equations in the Lindbland form has been used for describing the dynamics
of nanojunctions [Gurvitz and Prager, 1996, Li et al., 2005, Harbola et al., 2006, Timm, 2008] be-
cause its intuitive and simple results when describing weakly coupled systems [Harbola et al.,
2006,Esposito and Galperin, 2010,Thoss and Evers, 2018]. Nevertheless, the approximation typi-
cally used for deriving them sometimes becomes inadequate and leads to wrong results [Esposito
and Galperin, 2010, Ballmann et al., 2012]. Because observables are measured in stationary
regime, the Markov approximation, which has been reported reaches the same results that non-
Marvonian models in the stationary regime [Pedersen and Wacker, 2005], is not the main problem,
but the perturbative treatment of coupling with the reservoir, specially at low temperature [Thoss
and Evers, 2018]. For example, in single molecules and carbon nanotubes the electronic degree
of freedom could be strongly coupled to an specific vibrational mode rather than the vibrational
bath [Sowa et al., 2017], or the spin of electrons in quantum dots or single molecules could be
strongly correlated to the spins at the leads at low temperature [Kondo, 1964]. That means that
interesting transport effects, which requires a non-perturbative treatment for their description, as
Franck-Condon blockade or Kondo effect for example, fall outside the scope of our model.
Many methods have been developed to describe nanojunctions in a more exact way. Some of them
involves modifications to quantum master equations, which include non-perturbative and non-
Markovian effects [Esposito and Galperin, 2009]; taking in to account strong electron-phonon cou-
pling through (small) polaron transformation [Galperin et al., 2006,Galperin and Nitzan, 2006,Es-
posito and Galperin, 2009, Sowa et al., 2017, Sowa et al., 2018]; higher order perturbation pro-
cess, through Keldysh formalism [Timm, 2008]; or broadening effects of the molecular levels due
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to the coupling with the leads, through non-equilibrium Green functions [Pedersen and Wacker,
2005, Esposito and Galperin, 2009]. For more complex nano-sized material, interesting results
have been obtained using ad-initio methods, where the equilibrium electronic structure of the con-
ducting material is taken into account through the density of states, mixed with non-equilibrium
Green functions [Taylor et al., 2002,Thoss and Evers, 2018].

3.1.1 Rate equations

From the Lindbland quantum master equation in Eq. (3.4), the population ρn ≡ ρn,n = ⟨en| ρ̂C |en⟩
at the conducting array eigenstate |en⟩ evolves according to

d

dt
ρn =

∑
m

(
κ(n,m) + κ̃(m,n)

)
ρm − ρn

∑
m

(
κ(m,n) + κ̃(n,m)

)
, (3.8)

as a system of rate equations, while the coherences ρi,j = ⟨ei| ρ̂C |ej⟩ at the conducting array
eigenstates |ei⟩ and |ej⟩ evolve according to,

d

dt
ρi,j = −iωi,jρi,j −

1

2

∑
m

(
κ(m,i) + κ(m,j) + κ̃(i,m) + κ̃(j,m)

)
ρi,j . (3.9)

As shown in Eq. (3.8) and (3.9), the dynamics of population and coherences are decoupled when
the conducting array dynamics is written in terms of its eigenstates, because we use secular ap-
proximation in the derivation [Sowa et al., 2018]. This means that the whole dynamics is reduced
to population transfer between conducting array eigenstates with rates according to Fermi golden
rules, while the coherences decay to zero in steady state [Kouwenhoven et al., 1997,Esposito and
Galperin, 2010]. In principle, the decoupling could not be true if the density operator is written in
another basis, for example the local basis [Harbola et al., 2006].
Therefore, for solving the conducting array dynamics in Eq. (3.4), we implement only the popula-
tion evolutions from the rate equations in Eq. (3.8), because it reduces the system dimension from
a full density operator ρ̂C , with (2α×N )2 elements, to populations evolution, whit 2α×N elements.
Although the model could obtain time dependent observables, for the system characterization the
interesting observables are typically measured in the steady state where the set of populations
{ρn} reach stationary values {ρ̄n}. Therefore, the rate equations in Eq. (3.8) are solved imposing
the stationary conditions, these are,

{ ˙̄ρn} = 0,

2α×N∑
n=1

ρ̄n = 1. (3.10)

where the right condition ensures a non-trivial solution of the system of rates equations when the
left condition is satisfied.
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3.2 Nanojuction characterization

Figure 3.2: Diagram of nanojunction
energy levels, where electron transi-
tion between conducting array eigen-
states are induced by the leads at
chemical potentials µL and µR, split-
ted respect to the Fermi energy εF be-
cause an applied positive bias voltage
V . The presence of a gate voltage,
Vg, induces an electrostatics change
of the conducting array levels. Any
electron transition is accompanied by
an electron addition or subtraction,
and the net effect is measured as a
current IL and IR at the left and right
contact, respectively.

Because of the changes of charge number by the electron transitions induced by the leads, as
is shown in the Fig. 3.2, a flow (current) of electrons take place at the contact between the con-
ducting array and the leads, even in the steady state. Although the model considers the leads in
thermal-equilibrium during all the system dynamics, the non-equilibrium dynamics of the conduct-
ing array is associated to an slightly change of the leads observables, as the number of particles,
but it is not large enough to change their thermodynamics parameters (equivalent for radiation and
thermalized phonon reservoirs).

3.2.1 Current-voltage

With N̂L and N̂R the number operator of electron at the left and right lead, respectively, the currents
at the left and right contacts are defined as (derivation in Appendix C)

IL = −e d
dt

⟨N̂L⟩ = e
∑
n,m

(
κ
(n,m)
L ρm − κ̃

(n,m)
L ρn

)
,

IR = e
d

dt
⟨N̂R⟩ = −e

∑
n,m

(
κ
(n,m)
R ρm − κ̃

(n,m)
R ρn

)
,

(3.11)

respectively, which quantifies the variation of electrons in the leads produced by the non-equilibrium
conducting array dynamics. The different sign between left and right current is associated to the
definition of positive current to right and negative current to left. Giving the set of populations {ρn}
as a function of time, the currents IL and IR in Eq. (3.11) could be computed as a function of
time too, but for characterizing the system we compute stationary currents ĪL and ĪR, based on
the set of stationary populations {ρ̄n}. Is expected in the steady state ĪL = ĪR, because of the
conservation of electron number.
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The contribution of a specific eigenstate |en⟩ to the current at the left and right contacts are
defined as the state dependent currents

I
(n)
L = e

∑
m

(
κ
(n,m)
L ρm − κ̃

(n,m)
L ρn

)
,

I
(n)
R = −e

∑
m

(
κ
(n,m)
R ρm − κ̃

(n,m)
R ρn

)
,

(3.12)

respectively. In principle, the state dependent currents could satisfy Ī(n)L ̸= Ī
(n)
R in the steady state.

However, because of the definition in Eq. (3.11), the sum of all the state dependent currents in
their respective contacts must satisfy

∑
n Ī

(n)
L =

∑
n Ī

(n)
R .

An external bias voltage, V , induces a change of the left and right chemical potentials, µL and
µR, respectively, according to the relation

µL − εF = εF − µR =
1

2
eV, (3.13)

where the Fermi energy, εF , corresponds to the common energy level for the chemical potentials
at the zero bias voltage configuration, as is shown in Fig. 3.2 for a case where a positive bias
voltage is applied. As expected, if the conducting array allows it, the electrons tend to travel from
higher to lower chemical potential, producing a current IL and IR in their respective contacts as
a function of time, up to a stationary current ĪL and ĪR. Therefore, the applied voltage acts as a
driving source of electrons through the nanojunction.
In a specific region of voltage where the current modified, gives a peak of (differential) conduc-
tance, defined as,

ḠL =
dĪL
dV

, ḠR =
dĪR
dV

, (3.14)

at the left and right contacts, respectively.

3.2.2 Gate voltage

Applying a gate voltage Vg through a third gate induces a change in the conducting energy levels in
a continuous manner, as shown in Fig. 3.2. Fixing the empty conducting array eigenstate1 as the
zero-energy reference, when the gate voltage is applied, the induced changes in the nanojuction
energy levels are equivalent to a linear decrease of the Fermi energy according to,

εF → εF − eVg. (3.15)

1This eigenstate represent the configuration where there is not charge in the conducting array.
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Chapter 4

Results

Electron transport through quantum dots and molecular junctions exhibits interesting quantum
effects. Understanding these quantum signatures is absolutely necessary for possible applications
of these systems as building blocks in nano-electronics.
In this Chapter, we describe the electron transport properties of different nanojunctions in terms
of their current-voltage curves, based on the nanojuction description given in Chapter 2 and the
dynamics derived in Chapter 3. For a simple conducting array, the electron transition processes
induced by different reservoirs are studied. For more complex conducting arrays, state dependent
currents and photon fluxes are studied as a function of the conducting array geometry, and the
strength of an external source of incoherent light.

In this Chapter, the results have been computed using the parameters in Table 4.1. The rates
γL,γR, γrad and γph are assumed constant1. Therefore, the main dependence of the effective
transfer rates, κ(n,m)

λ and κ̃(n,m)
λ , comes from the fermion or boson densities, f (n,m)

L(R) and n(n,m)
rad(ph),

respectively (see details in Table B.2).
Although the rate of spontaneous emission typically has a value of γrad ≈ 10−5[eV], we analyze
the case where it is comparable with the typical tunneling rates (γL(R) ≈ 0.01− 0, 1[eV]), because,
when the spontaneous emission rate is slower that tunneling rate, it can be practically ignored,
which is not desired when we try to analyse optoelectronic behaviour [Thoss and Evers, 2018].
High spontaneous emission rates, such as those in Table 4.1, have been measured in experiments
with plasmonic nanoantennas [Hoang et al., 2015].

1This approximation is known as the wide band limit.
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Table 4.1: Nanojunctions parameters, taken from [Harbola et al., 2006,Hoang et al., 2015,Liu and
Segal, 2020].

Ground local energy level εg 0.5 eV

Excited local energy level εe 1.5 eV

Hopping rate t 0.2 eV

Coulomb repulsion energy U 0.1 eV

Fermi energy εF 0.5 eV

Temperature T0 290 K

Left tunneling rate γL 0.01 eV

Right tunneling rate γR 0.01 eV

Spontaneous emission rate γrad 0.005 eV

Phonon relaxation rate γph 0.01 eV

4.1 Electron transition processes

In Sec. 3.1 we discuss induced electron transition processes in electron transport. Because
different microscopic processes could be present at the same time, for the analysis of one of
them, in the following simple conducting arrays are considered.

4.1.1 Resonant tunneling

Consider a conducting array of N = 1 site with a local ground energy level εg, connected to the
leads, as illustrated in Fig. 4.1(a). Based on the parameters in Table 4.1, the nanojunction energy
levels are shown in Fig. 4.1(b), for the left lead (L), the conducting array (C) and the right lead
(R) at 1[V] bias voltage. The arrows represent transitions between the nanojunction energy levels
induced by different reservoirs, each one associated with different colors2. In this case, the nano-
juction undergoes electron tunneling with the leads, being the simplest conducting array which
contains this microscopic process. Tunneling induces population transfer between the conducting
array eigenstates |e1⟩ = |0g⟩ and |e2⟩ = |1g⟩, which represent zero and one electron in the ground
local energy level εg, respectively.

If the conducting array is initially uncharged, all the population is in the conducting array eigen-
state |e1⟩. The population evolution induced by a applied constant bias voltage of 1[V] is shown in
Fig. 4.1(c). The populations evolve up to their stationary values ρ̄1 and ρ̄2 after a time of approxi-
mately 10−3[ns], which agree with the typical tunneling time 1/(γL + γR) ≈ 10−3[ns]. As expected,
both populations are equal at the steady state because, based on the rates equations in Eq. (3.8),
the stationary populations at bias voltage V , given by

ρ̄1 =
γLγR
γL + γR

(
f̃
(2,1)
L (V )

γR
+
f̃
(2,1)
R (V )

γL

)
, and ρ̄2 =

γLγR
γL + γR

(
f
(2,1)
L (V )

γR
+
f
(2,1)
R (V )

γL

)
, (4.1)

2In the case of tunneling, the arrows only represent the transfer of a single electron between the nanojunc-
tion energy levels, but not the induced transitions between the conducting array eigenstates as it was show
in Fig. 3.2.
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Figure 4.1: For conducting ar-
ray of N = 1 site with a lo-
cal ground energy level εg, con-
nected to the leads; (a) nano-
junction; (b) nanojunction en-
ergy levels for left lead (L),
conducting array (C) and right
lead (R) at bias voltage of 1[V],
where arrows represent elec-
tron transfer induced by left
lead (orange) and right lead
(green); population (c) and cur-
rent (d) evolution from conduct-
ing array in uncharged config-
uration when is applied a con-
stant bias voltage of 1[V ]. Pa-
rameters in Table 4.1.

satisfy ρ̄1 = ρ̄2 when the voltage is swept symmetrically, as in Eq. (3.13), and the tunneling rates
are equal. As the time populations evolve, the currents at the contact evolve, as is shown in Fig.
4.1(d). During the evolution we can have IL ̸= IR. The currents reach the same stationary value
at same time that populations reach an stationary value, verifying the condition ĪL = ĪR because
of the conservation of electron number.

For the nanojunction in Fig. 4.1(a), the computed current-voltage curve is shown in Fig. 4.2(a).
The stationary currents satisfy ĪL(V ) = ĪR(V ), because of the conservation of electron number,
while the expression for the stationary currents at bias voltage V , computed using the stationary
population in Eq. (4.1) and the definition in Eq. (3.11),

ĪL(V ) = ĪR(V ) = e
γLγR
γL + γR

(
f
(2,1)
L (V )− f

(2,1)
R (V )

)
, (4.2)

explaining the symmetric behaviour ĪL(R)(V ) = −ĪL(R)(−V ), when the chemical potentials are
swept symmetrically. As is shown in the current-voltage curve, and according to the stationary
current in Eq. (4.2), the current is zero at zero bias voltage, and different from zero for a non-zero
bias. The stationary current increases (decreases) while the voltage increase (decreases), up
to a saturation current at high bias voltage,3 where the fermion densities, f (2,1)L (V ) and f (2,1)R (V )

become constant, verifying that the expression in Eq. (4.2) reduces to the one in [Gurvitz and
Prager, 1996, Li et al., 2005]. The sign of the current-voltage curve, means that the electrons are
transported through the conducting array from the highest to the lowest chemical potential, having
a non-ohmic behaviour.

We expect a peak of conductance at a voltage where the chemical potentials, µL(R), are res-
onant with the transition frequency, ωn,m, because of the energy dependence of the fermionic

3Defined as the bias voltage range where the current reaches a saturation value.
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Figure 4.2: For conducting array of N = 1 sites with a local ground energy level εg, connected to
the leads; (a) current-voltage curve; (b) conductance-voltage curve, where vertical dotted lines rep-
resent where is satisfied the resonant condition with an transition frequency ωn,m; (c) conductance-
voltage as a function of gate voltage. Parameters in Table 4.1.

densities, f (n,m)
L(R) . The conductance-voltage curve shown in Fig. 4.2(b) shows that the nanojuction

in Fig. 4.1(a) has a conductance peak at zero-bias voltage configuration, because it corresponds
where both chemical potentials are resonant with the transition frequency ω2,1 = ωg, represented
as a dotted vertical line. When the gate voltage is finite, the changes of the Fermi energy εF tend
to split and the height of the conductance peaks decreases, as is shown in Fig. 4.2(c), because
of the chemical potentials become resonant with the transition frequency ω2,1 one at time for a
non-zero bias voltage configurations.

Spin dependent tunneling

The model can take in to account the electronic spin through the index σ = {↓, ↑} for up and down
spin, respectively. Consider a conducting array of N = 1 site with a degenerate local spin level εg,
as was illustrated in Fig. 4.1(a), the nanojunction is described by the Hamiltonian,

Ĥ =

ĤC︷ ︸︸ ︷∑
σ

εg ĉ
†
1,g,σ ĉ1,g,σ +

U

2

∑
σ ̸=σ,

ĉ†1,g,σ, ĉ1,g,σ, ĉ†1,g,σ ĉ1,g,σ +

ĤE︷ ︸︸ ︷∑
l,k,σ

ωk ĉ
†
k,l,σ ĉk,l,σ

+
∑
l,k,σ

u
(l)
i

(
V

(l)
k ĉ†1,g,σ ĉl,k,σ + V

(l)∗
k ĉ†l,k,σ ĉ1,g,σ

)
︸ ︷︷ ︸

ĤI

,
(4.3)

Table 4.2: Conducting array eigenstates {|en⟩}, representation in the Fock space and spectrum
{ωn}, for conducting array of N = 1 site with a degenerated local ground energy level εg and
Coulomb repulsion U .

Eigenstates Fock space Spectrum

|e1⟩ |0↑, 0↓⟩ 0

|e2⟩ |0↑, 1↓⟩ εg

|e3⟩ |1↑, 0↓⟩ εg

|e4⟩ |1↑, 1↓⟩ 2εg + U
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Figure 4.3: For conducting array of N = 1 site with degenerate local ground spin level εg, con-
nected to the leads; (a) nanojunction energy levels for left lead (L), conducting array (C) and
right lead (R), where arrows represent electron transfer induced by left lead (orange), right lead
(green), radiation (blue) and phonon (black) at bias voltage of 1[V]; (b) current-voltage curve; (b)
conductance-voltage curve, where vertical dotted lines represent where is satisfied the resonant
condition with an transition frequency ωn,m; (d) conductance at zero bias voltage as a function of
gate voltage for different environment temperatures, where vertical dotted lines represent where is
satisfied the resonant condition with an transition frequency ωn,m (inset: Conductance as a func-
tion of temperature on magnetic region). Parameters in Table 4.1.

where ĉ1,g,σ (ĉ†1,g,σ) annihilates (creates) an electron in the ground level with spin σ at the con-
ducting array site 1 and ĉk,l,σ (ĉ†k,l,σ) annihilates (creates) an electron in the mode k from lead l

with spin σ. We consider the energy of electron in the leads, ωk, and the coupling, V (l)
k , are spin

independent.
The nanojunction energy levels in Fig. 4.3(a) shows that the conducting array allows electron tun-
neling through the leads. When ground local energy levels are fully occupied by the electrons with
opposite spins, the Coulomb interaction between them produces a shift in energy U , as is shown
for the eigenstate |e4⟩ in the Table 4.2.

The current-voltage and conductance-voltage curves are shown in Fig. 4.3(b) and (c), respec-
tively. Compared with the case without spin (see Fig. 4.2), both currents are zero at zero-bias
voltage and increases (decreases)as the bias voltage increases (decreases), but following a differ-
ent shape and reaching different saturation currents. In the case with spins the saturation current
is almost double the saturation current that the case without spin. The differences are produced
because of the possibility of having two electrons in the local energy level εg.
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When a gate voltage at zero-bias voltage is applied, the resonant condition of tunneling with
the leads is affected. Despite the current at zero-bias voltage is zero no matter the gate voltage,
the conductance is not necessarily zero, as is shown in Fig. 4.3(d), where a conductance peak
at resonant condition is produced, represented by vertical dotted lines. The conductance peaks
represent that the conducting array is charging. The separation of conductance peaks in a gate
voltage is U , meaning that the Coulomb interaction implies an extra energy for charging the con-
ducting array, which is a Coulomb blockade process.
The thermal dependence of conductance peaks comes from the fermion densities, f (n,m)

L(R) , which
explain why it tends to widen and decreases as the temperature increases. At the middle of the
region between the two conductance peaks, known as the magnetic region4, the conductance
decreases monotonically as the temperature decrease, as is shown in the inset figure.

4.1.2 Spontaneous emission

Figure 4.4: For conducting ar-
ray of N = 1 site with lo-
cal ground and excited energy
level εg and εe, respectively, and
coulomb repulsion U , connected
to the leads; (a) nanojunction;
(b) nanojunction energy levels for
left lead (L), conducting array (C)
and right lead (R) at bias voltage
of 1[V], where arrows represent
electron transfer induced by left
lead (orange), right lead (green)
and radiation (blue); (c) current-
voltage curve; (d) conductance-
voltage curve, where vertical dot-
ted lines represent where is satis-
fied the resonant condition with an
transition frequency ωn,m. Param-
eters in Table 4.1.

Consider a conducting array of N = 1 sites with local ground and excited energy level εg and
εe, respectively, and Coulomb repulsion energy U , connected to the leads, as illustrated in Fig.
4.4(a). The nanojunction energy levels, shown in Fig. 4.4(b), shows that the system undergoes
electron tunneling with the leads and spontaneous emission, being the simplest conducting array
that allows this microscopic process. Spontaneous emission induces population transfer between
the eigenstate |e3⟩ to |e2⟩ (see Table 4.3). The Coulomb interaction appears in the eigenstate |e4⟩,
producing an energy shift U .

The current-voltage curve and conductance-voltage curve are shown in Fig. 4.4(c) and (d), re-
spectively. The stationary current increases as the chemical potential is resonant with the transition
energies, which explain the conductance peaks. For the bias voltage region down the resonance
ω3,1, the electron transport is equal to the case of conducting array with only local ground energy

4The region the configuration of total spin S = 1/2 and S = 0 [Inoshita, 1998].
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Figure 4.5: For conducting array
of N = 1 sites with local ground
and excited energy level εg and
εe, respectively, and Coulomb re-
pulsion energy U , connected to
the leads; stationary populations
as a function of voltage when
(a) the light-matter interaction is
off and (b) the light-matter inter-
action is on, where vertical dot-
ted lines represent where is sat-
isfied the resonant condition with
an transition frequency ωn,m; (c)
stationary state dependent cur-
rents as a function of voltage,
where vertical dotted lines repre-
sent where is satisfied the reso-
nant condition with an transition
frequency ωn,m. Parameters in
Table 4.1.

(see Fig. 4.2), because of the dynamics in this region is produced only by the eigenstates |e1⟩
and |e2⟩ only. When the voltage increases, two more conductance peaks are produced by the
resonance with the transition frequencies ω3,1 and ω4,2, which increase the current, reaching the
saturation value after the third conductance peak.

Table 4.3: Conducting array eigenstates {|en⟩}, representation in the Fock space and spectrum
{ωn}, for conducting array of N = 1 site with local ground and excited energy level εg and εe,
respectively, and Coulomb repulsion U .

Eigenstates Fock space Spectrum

|e1⟩ |0g, 0e⟩ 0

|e2⟩ |1g, 0e⟩ εg

|e3⟩ |0g, 1e⟩ εe

|e4⟩ |1g, 1e⟩ εg + εe + U

Light-matter interaction in principle incorporates the processes of electron excitation, at rate
κ
(3,2)
rad , and spontaneous emission, at rate κ̃

(3,2)
rad , but, because κ̃

(3,2)
rad ≫ κ

(3,2)
rad , the net effect of

light-matter interaction in the nanojunction dynamics is spontaneous emission. This effect is ap-
preciable in the voltage region where electrons from the leads are tunnelled to the excited levels,
which happens after the conductance peaks ω3,1. When light-matter interaction is off (setting
γrad = 0), the stationary populations ρ̄3 and ρ̄4 in the bias voltage range after the conductance
peak at ω3,1 increase while ρ̄1 and ρ̄2 decrease, up to a value of ρ̄1 = ρ̄2 = ρ̄3 = ρ̄4 = 0.25 at
saturation, as shown in Fig. 4.5(a). When light-matter interaction is on, shown in Fig. 4.5(b), in
the same bias voltage range the behaviour of stationary populations is similar, but the value of
the populations at the saturation configuration is such that ρ̄3 < ρ̄2, because of the spontaneous
emission tends to transfer population from ρ̄3 to ρ̄2.
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Although the current-voltage curve satisfies ĪL = ĪR along the bias voltage, as was shown in
Fig. 4.4(c), it does not happend with the stationary state dependent currents, as is shown in Fig.
4.5(c). The state dependent current in the voltage range after the conductance peak at ω3,1 sat-
isfies Ī(2)L < Ī

(2)
R and Ī

(3)
L > Ī

(3)
R , because spontaneous emission produces the eigenstate |e2⟩

transfer to the right part of the population which comes from eigenstate |e3⟩, despite both eigen-
states receive the same current from the left lead (Ī(2)L = Ī

(3)
L ). Therefore, any process different

to the leads tunneling which induces transfer of population to a conducting array eigenstate |en⟩
will produce that its stationary state dependent current satisfies Ī(n)L ̸= Ī

(n)
R . This explain why the

eigenstates not effected by spontaneous emission satisfy Ī(1)L = Ī
(1)
R and Ī(4)L = Ī

(4)
R .

4.1.3 Phonon relaxation

Figure 4.6: For conducting ar-
ray of N = 2 sites with a lo-
cal ground energy level εg, and
hopping constant tg, connected
to the leads; (a) nanojunction;
(b) nanojunction energy levels for
left lead (L), conducting array (C)
and right lead (R) at bias voltage
of 1[V], where arrows represent
electron transfer induced by left
lead (orange), right lead (green)
and phonon (black); (c) current-
voltage curve; (d) conductance-
voltage curve, where vertical dot-
ted lines represent where is satis-
fied the resonant condition with an
transition frequency ωn,m. Param-
eters in Table 4.1.

Consider a conducting array of N = 2 sites with local ground energy levels εg and hopping con-
stant tg = t, connected to the leads, as is illustrated in Fig. 4.6(a). The nanojunction energy levels,
shown in Fig. 4.6(b), shows that the tight-binding interaction produces an energy splitting −t and
t of the delocalized eigenstates |e2⟩ and |e3⟩ (see Table 4.4), respectively. The electron-phonon
couling is included in the dynamics as a phonon relaxation process between the delocalized eigen-
states, which produce population transfer between the delocalized eigenstates, being the simplest
conducting array which contains the last microscopic process.

Table 4.4: Conducting array eigenstates {|en⟩}, representation in the Fock space and spectrum
{ωn}, for conducting array of N = 2 sites with a local ground energy level εg, and hopping constant
t.

Eigenstates Fermion Fock space Spectrum

|e1⟩ |0g; 0g⟩ 0

|e2⟩ 2−1/2 (|0g; 1g⟩ − |1g; 0g⟩) εg − t

|e3⟩ 2−1/2 (|0g; 1g⟩+ |1g; 0g⟩) εg + t

|e4⟩ |1g; 1g⟩ 2εg
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Figure 4.7: For conducting ar-
ray of N = 2 sites with a lo-
cal ground energy level εg, and
hopping constant tg, connected
to the leads; stationary popu-
lations as a function of voltage
when (a) the electron-phonon
interaction is off and (b) the
electron-phonon interaction is
on; (c) stationary state depen-
dent currents as a function of
voltage. Parameters in Table
4.1.

The current-voltage and conductance-voltage curve are shown in Fig. 4.6(c) and (d), respectively.
The nanojunction begin to performs current when the chemical potentials are resonant with the
transition frequencies ω2,1 and ω3,1, related with the conductance peak. Is expected conductance
peaks when electrons are tunneled to the delocalized eigenstates, because this states are the
only which can connect electrons at the left and right lead. Therefore is explained why there is not
current at zero-bias voltage, unlike with the nanojunctions analyzed in Sec. 4.1.1 and Sec. 4.1.2.

In Fig. 4.7(a) and (b) is shown the stationary populations as a function of voltage when the
electron-phonon coupling is off (γph = 0) and on, respectively. In the voltage region down the con-
ductance peak, the stationary population accumulates in the eigenstate |e1⟩, because it receives
preferentially electrons from the left lead, but can not transfer to the right lead because is energeti-
cally unfavourable. For the voltage region above the conductance peak, when the electron-phonon
interaction is off, all the stationary populations reach the same value at the saturation configura-
tion. However, when electron-phonon interaction is on, the stationary populations at the saturation
configuration satisfy ρ̄2 > ρ̄3. The last difference of population is induced by the phonon relaxation
because κ̃(3,2)ph ≫ κ

(3,2)
ph and the net effect of electron-phonon coupling is transfer population from

|e3⟩ to |e2⟩, as was discussed for spontaneous emission in Sec 4.1.2.

The state dependent currents as a function of voltage, shown in Fig. 4.7(c), show that for the
voltage region above the conductance peak the state dependent currents satisfy Ī(2)L ≤ Ī

(2)
R and

Ī
(3)
L ≥ Ī

(3)
R , while the relations Ī

(1)
L = Ī

(1)
R and Ī

(4)
L = Ī

(4)
R are satisfied during all the voltage

range. The different between the left and right state dependent current of eigenstates |e2⟩ and |e3⟩
is produced because of the eigenstate |e2⟩ transfers to the right lead also part of the population
which comes from eigenstate |e3⟩, because of the phonon relaxation.
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4.2 Geometry array dependence

Figure 4.8: For a conducting
array of N = 4 sites with lo-
cal ground energy level εg, and
hopping rates tg; nanojunction
for (a) linear conducting array
and (b) circular conducting ar-
ray; (c) current-voltage curves
for linear and circular conduct-
ing array; (d) conductance-
voltage curves for linear and
circular conducting array. Pa-
rameters in Table 4.1.

Consider a conducting array of N = 4 sites with local ground energy level εg and hopping rate
tg = t in linear and circular geometry, as is illustrated in Fig. 4.8(a) and (b), respectively. Both
nanojunctions undergo electron tunneling with the leads and phonon relaxation. The differences
between them is the hopping interaction, because in the circular geometry is added hopping inter-
action between the sites i = 4 and i = 1, and the sites which connected to the leads, because of
the right lead coupling with the conducting site i = 4 for linear array and with the conducting site
i = 3 for circular array.

The current-voltage curves for both geometries are shown in Fig. 4.8(c). The difference of
current-voltage curves are explained by the different hopping interactions, which change the con-
ducting array eigenstates and spectrum, and the different sites which interact with the leads, which
produce populations transfer between different sets of eigenstates at different rates. These rea-
sons also explain why the conductance peaks are localized at different bias-voltages and have
different sizes, as is shown in Fig. 4.8(d). Although, the both current looks like a displacement
of one respect to the other, reaching a common value of its saturation currents. Comparing the
saturation current values of conducting arrays based on ground local levels (see Fig. 4.2(a) and
4.6(c)), all of them have similar value. Therefore, the value of saturation current is limited princi-
pally by considering one local energy level, not by the conducting array geometry.
The stationary state dependent current for linear and circular conducting array at the saturation
configuration are shown in Fig. 4.9(a) and (b), respectively. For both geometries, the states de-
pendent contribution looks similar as a function of n, which only enumerates the eigenstates from
lowest to highest energy. Almost all of the state dependent current are different at the right and
left for the set of eigenstates, because of the presence of phonon relaxation, as we discussed in
Sec. 4.1.3. When the electron-phonon interaction is off (γph = 0) all the state dependent current
satisfies Ī(n)L = Ī

(n)
L for all the set of eigenstates, as is shown in Fig. 4.9(c) and (d) for linear and

circular conducting array, respectively.
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Figure 4.9: For a conducting array of N = 4 sites with local ground energy levels εg, and hopping
rates tg; state dependent current at 2[V] bias voltage for (a) linear conducting array and (b) circular
conducting array; and when the the electron-phonon interaction is off (γph = 0) for (c) linear
conducting array and (d) circular conducting array. Parameters in Table 4.1.

Figure 4.10: For a circular con-
ducting array of N = 4 sites
with local ground energy lev-
els εg; (a) nanojunction for
symmetric hopping rates tg
; (b) nanojunction for non-
symmetrical hopping rates of tg
for upper path and t,g for lower
path; (c) current-voltage curves
for circular symmetric and non-
symmetrical conducting array.
Parameters in Table 4.1.
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In multiple-path systems, the wave function, as a complex number, can interferes during the
transport, increasing or decreasing the tunneling for constructive and destructive interference, re-
spectively [Taylor et al., 2002]. The process of quantum interference must be maximum when the
electron path are indistinguishable, as the upper and lower path in the case of circular array shown
in Fig. 4.10(a). Therefore, when the path are slightly distinguishable, as the non-symmetrical cir-
cular conducting array shown in Fig. 4.10(b) where the hopping rate for the upper and lower paths
are tg = t and t,g = 0.97t, respectively, the quantum interference effect must be minimized.
In Fig. 4.10(c) are shown the conductance-voltage curves for circular symmetric and non-symmetrical
conducting array, where we fix γph = 0 for observing only the tunneling dynamics. The slightly dif-
ferent of their conductance-voltage curves comes from the changes of eigenstates and energies,
but is not observed any suppression of currents because of the quantum interference, as is ex-
pected in this kind of systems [Solomon et al., 2009].

4.3 Incoherent pumping

In the presence of a light source, molecular junctions has demonstrated the phenomena of light-
induced current [Lara-Avila et al., 2011,Battacharyya et al., 2011], measured as an enhancement
of current due the creation of excited-state molecule, and current-induced light [Qiu et al., 2003,Wu
et al., 2008], measured as luminescence because of the tunneled excited electrons. Both effects
has been also studied theoretically in [Galperin and Nitzan, 2005,Galperin and Nitzan, 2006].

In a two-level system, an applied source of incoherent light excites electrons from the local
ground to the excited level incoherently. If this source is applied to the conducting array, in the
perturbative regime the effect on the nanojunction dynamics in taken in to account adding the
dissipative term

∑
i

WExt

(
ĉ†i,eĉi,gρ̂C(t)

(
ĉ†i,eĉi,g

)†
− 1

2

{(
ĉ†i,eĉi,g

)†
ĉ†i,eĉi,g, ρ̂C(t)

})
, (4.4)

in the Lindbland quantum master equation in Eq. (3.4). We consider the pumping rate, WExt, as a
constant because we assume a constant spectral density in the range of transition frequencies. In
the secular approximation, the dissipator in Eq. (4.4) in the energy basis is reduced to∑

n,m

κ
(n,m)
Ext Ln,m [ρ̂C(t)] , κ

(n,m)
Ext =WExt| ⟨en|

∑
i

ĉ†i,eĉi,g |em⟩ |2, (4.5)

which means that the incoherent pumping induces electron transitions between the conducting
array eigenstates |em⟩ → |en⟩ with effective transfer rate κ

(n,m)
Ext . The effective transfer rates of

pumping in Eq. (4.5) follow the same selection rules of eigenstates than excitation by photons,
κ
(n,m)
rad (see details in Table B.2).
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Figure 4.11: For conducting ar-
ray of N = 2 sites with lo-
cal ground and excited en-
ergy level εg and εe, respec-
tively, Coulomb repulsion en-
ergy U and hopping rate te
through the local excited en-
ergy level, connected to the
leads; (a) nanojunction; (b)
current-voltage curve as a func-
tion of incoherent pumping
rate; (c) conductance-voltage
curve as a function of incoher-
ent pumping rate; (d) stationary
photon flux as a function of bias
voltage and pumping rate. Pa-
rameters in Table 4.1.

Consider a conducting array with N = 2 sites5 with local energy levels εg and εe, Coulomb
repulsion energy U and hopping rate te = t only between the excited levels, connected to the
leads, as is illustrated in Fig. 4.11(a). The nanojunction undergoes electron tunneling with the
leads, spontaneous emission and phonon relaxation.
The effect of incoherent pumping in the current-voltage curve is shown in the Fig. 4.11(b), where
we consider WExt up to 0.5γrad for being considered as a perturbation and being valid the two-
level approximation. It is shown that incoherent pumping produces an offset of current respect
to the case without pumping, as a light-induced current process, but conserving similar shape.
The incoherent pumping increases the stationary current intermediately when the bias voltage
appears, because it transfers electrons from the localized ground eigenstates to the delocalized
excited eigenstates, from where the electrons could tunnels preferentially to the lower chemical
potentials, which explains the conductance peak at zero bias voltage shown in Fig. 4.11(c). After
the first conductance peaks, both current-voltage curves have similar bias voltage dependence,
because this region the voltage range the current comes from the electrons tunneled from the
leads to the excited eigenstates. With or without incoherent pumping, both currents reach similar
saturation value. The saturation currents are less than obtained from other nanojunction based on
conducting array with two local energy levels (see Fig. 4.4(c)).
Let N̂rad be number operator of photons in the radiation, the stationary photon flux emitted by the
conducting array is defined as (see derivation in Appendix C)

j̄rad =
d

dt
⟨N̂rad⟩ = −

∑
n,m

(
κ
(n,m)
rad ρ̄m − κ̃

(n,m)
rad ρ̄n

)
, (4.6)

which quantifies the number of photons per unit of time added to the radiation field by the non-
equilibrium conducting array dynamics. As is shown in Fig. 4.11(d), the incoherent pumping

5It was verified that incoherent pumping in the case of conducting array with N = 1 sites in Fig. 4.4(a)
does not affect the electron transport, because it only tend to apposite the effect of spontaneous emission.
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Figure 4.12: For conducting array of N = 2 sites with local ground and excited energy level εg
and εe, respectively, Coulomb repulsion energy U and hopping rate te through the local excited
level, connected to the leads; (a) state dependent currents at 0[V] bias voltage without incoherent
pumping (inset: case with WExt = 0.5γrad); (b) stationary current at 0[V] bias voltage as a function
of incoherent pumping and tunneling rates. Parameters in Table 4.1.

increases the photon flux respect to the case without it, because of the electrons excited by the
incoherent pumping can decay by spontaneous emission, emitting photons in the process. Both
curves have the similar bias voltage dependence, because of the increasing of photon flux is pro-
duced by electrons which previously have been tunnelled from the leads to the excited delocalized
eigenstates, as current-induced light process.

When we focus on the zero-bias voltage configuration, despite the stationary currents in the
nanojunction are zero no matter the incoherent pumping rate (see Fig. 4.11(b)), some stationary
state dependent currents, shown in Fig. 4.12(a), have positive and negative values, which satisfy
Ī
(n)
L ̸= Ī

(n)
R . When the incoherent pumping is off, the stationary state dependent currents are low

(≈ 10−15[nA]) respect to the saturation current reached by the system (≈ 102[nA]). However, it
is not so the case when the incoherent pumping is applied, where there are significant state de-
pendent currents (≈ 101[nA]). Those significant stationary state dependent current are produced
because of the electrons, which originally are in the localized ground eigenstates, are excited to
the delocalized excited eigenstates, which produces that the empty localized ground eigenstates
can receives electrons from the leads, while the electrons in the delocalized excited eigenstates
can tunnels to the leads. Even so, the stationary current, as the sum of all the state dependent cur-
rents in their respective leads, is zero in the both contacts when the pumping is applied because
of the tunneling process does not prefer any specific direction when the tunneling rates are equal.
Nevertheless, when γR ̸= γL

6, an stationary photocurrent is induced to the right if γR > γL or to
the left if γR < γL at zero bias voltages, as is shown in Fig. 4.12(b). The stationary photocurrent
at zero bias voltage has a maximum value of approximately 15% of the saturation current of the
nanojuction. Photocurrents at zero bias voltage when the tunneling rates are different have been
predicted before in [Galperin and Nitzan, 2005,Galperin and Nitzan, 2006] for similar systems.

6The tunneling rates are modifying increasing their values respect to the given in Table 4.1.
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Figure 4.13: For conducting ar-
ray of N = 2 sites with lo-
cal ground and excited energy
level εg and εe, respectively,
Coulomb repulsion energy U
and hopping rate tg through the
local ground level, connected
to the leads; (a) nanojunction;
(b) current-voltage curve as a
function of incoherent pumping
rate; (c) stationary photon flux
as a function of bias voltage
and pumping rate; (d) station-
ary current at 0[V] bias volt-
age as a function of incoher-
ent pumping rate and tunneling
rates. Parameters in Table 4.1.

When the conducting array in Fig. 4.11(a) has a hopping constant tg = t only between the
ground levels, the nanojunction is illustrated in the Fig. 4.13(a). The nanojunction also undergoes
electron tunneling with the leads, spontaneous emission and phonon relaxation, but with different
rates and set of eigenstates.
Because of the nanojunction is delocalized in the ground eigenstates, is expected the stationary
current is not considerably enhanced by the incoherent pumping, as is shown in Fig. 4.13(b), be-
cause of the spontaneous tends to naturally delocalize the electrons.
Because of the incoherent pumping is constantly exciting electrons, is expected an increase of
the stationary photon flux respect to the case without it, as is shown in Fig. 4.13(c). The bias
voltage dependence of photon flux for both cases look similar, because is the current-induced light
process.

Because of the non-equilibrium dynamics induced by the incoherent pumping at zero bias volt-
age condition, when the tunneling rates at left and right contacts are different in the nanojunction in
Fig 4.13(a), stationary photocurrent is induced to the left if γR > γL and to the right when γR < γL,
with a maximum value of approximately 15% of the saturation current. Compared with the case of
hopping in the excited levels (see Fig. 4.12(b)), the stationary photocurrent at zero voltage config-
uration varies between similar values. Nevertheless, the direction of photocurrent is the opposite.
This difference of the direction is explained because, while the conducting array delocalized in the
excited levels only transfers electrons from the delocalized excited eigenstates preferentially to the
lead with higher tunneling rates, producing stationary current to the higher tunneling direction, the
conducting array delocalized in the ground levels only receives electrons preferentially from the
lead with higher tunneling rate to the delocalized ground eigenstates, producing stationary current
to the lower tunneling direction.
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Conclusions

In this Thesis, we study electron transport in driven nanojunctions. We use the second quanti-
zation formalism to describe a nanojunction composed of an array of conducting sites coupled
to electronic leads. Conducting sites can represent individual quantum dots or single conjugated
molecules. We study the current-voltage dynamics of the nanojunction using the density matrix for-
malism discussed, solving for the transient and steady-state response of the conducting system by
numerically integrating the corresponding Lindblad quantum master equation using Python code
developed for this Thesis. Driven-dissipative electron transport systems are common in natural
and artificial scenarios. The dissipative operators and rates were defined in agreement previous
work in the literature, resulting in analytical expressions for the electron currents through the sys-
tem that were in agreement with previous work [Gurvitz and Prager, 1996, Li et al., 2005]. The
simplicity of our nanojuction model offers simple and intuitive tools for describing electron trans-
port in nanojunctions. The decoupling of populations and coherences in our Lindblad formalism,
ensures that the nanojunction dynamics is reduced only to the evolution of population, which could
be useful for analyzing electron transport through complex conducting arrays, because of the di-
mensionality of the system dynamics then scales only linearly with the system dimension, while
others full quantum master equations scale in principle quadratically with the system dimension.

Under the influence of an external voltage, we studied the dependence of the current-voltage
curves on the number of array sites, the geometry of the conducting array, the magnitude of the
state-dependent electron tunneling rates, the electron-phonon coupling strength, and the spon-
taneous emission rate. Additionally, we study the influence of an incoherent light source that
pumps energy into the conducting array, on the state-dependent electron current and photon flux
through the system. Our results show that resonant electron tunneling explains the positions of
the conductance peaks, while spontaneous emission and phonon relaxation processes explain
the possible difference between left and right stationary currents for individual system eigenstates.
We also show that the electron transport depends on the geometry of the conducting array, for
fixed number of sites and local energy levels. When the incoherent pumping source is applied on
a delocalized electron state within the array, our results agree with the results obtained in [Galperin
and Nitzan, 2005,Galperin and Nitzan, 2006], which for a similar system predict light-induced cur-
rent and current-induced light, and the non-equilibrium dynamics induced with the leads at zero
bias voltage can be reflected in stationary photocurrent when the left-right tunneling rates are dif-
ferent. The direction of the induced photocurrent depends on whether the conducting array has
delocalized electrons in the ground or the excited orbital manifolds.
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Given our simplified Lindblad master equation approach, several interesting phenomena fall
outside of the scope of this Thesis, including polaron effects and other Non-Markovian system-
environment interactions that may be relevant in experiments. In the near future, our work can
be extended to describe charge and excitation transfer in nanojunction that are strongly coupled
to quantized electromagnetic fields, under conditions that favor the formation of hybrid polariton
states that are part light and part matter. Experimental [Orgiu et al., 2015,Chikkaraddy et al., 2016]
and theoretical [Hagenmüller et al., 2017, Hagenmüller et al., 2018, Schäfer et al., 2019] studies
have reported enhanced of currents relative to cavity-free scenario by orders of magnitude. These
enhanced currents have been associated with vacuum-induced electron-electron correlations over
large distances, and the formation of coherent states which extend over hundreds of molecules.
Possible applications of these transport enhancements are currently under intense investigation in
the emerging field of molecular polaritons [Herrera and Owrutsky, 2020].
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[Ballmann et al., 2012] Ballmann, S., Härtle, R., Coto, P. B., Elbing, M., Mayor, M., Bryce,
M. R., Thoss, M., and Weber, H. B. (2012). Experimental evidence for quantum interference
and vibrationally induced decoherence in single-molecule junctions. Physical review letters,
109(5):056801.

[Battacharyya et al., 2011] Battacharyya, S., Kibel, A., Kodis, G., Liddell, P. A., Gervaldo, M.,
Gust, D., and Lindsay, S. (2011). Optical modulation of molecular conductance. Nano letters,
11(7):2709–2714.

[Breuer et al., 2002] Breuer, H.-P., Petruccione, F., et al. (2002). The theory of open quantum
systems. Oxford University Press on Demand.

[Bruus and Flensberg, 2004] Bruus, H. and Flensberg, K. (2004). Many-body quantum theory in
condensed matter physics: an introduction. Oxford university press.

[Burzurı́ et al., 2014] Burzurı́, E., Yamamoto, Y., Warnock, M., Zhong, X., Park, K., Cornia, A.,
and van der Zant, H. S. (2014). Franck–condon blockade in a single-molecule transistor. Nano
letters, 14(6):3191–3196.

[Chikkaraddy et al., 2016] Chikkaraddy, R., De Nijs, B., Benz, F., Barrow, S. J., Scherman, O. A.,
Rosta, E., Demetriadou, A., Fox, P., Hess, O., and Baumberg, J. J. (2016). Single-molecule
strong coupling at room temperature in plasmonic nanocavities. Nature, 535(7610):127–130.

[Esposito and Galperin, 2009] Esposito, M. and Galperin, M. (2009). Transport in molecular states
language: Generalized quantum master equation approach. Physical Review B, 79(20):205303.

[Esposito and Galperin, 2010] Esposito, M. and Galperin, M. (2010). Self-consistent quantum
master equation approach to molecular transport. The Journal of Physical Chemistry C,
114(48):20362–20369.

42



[Evers et al., 2020] Evers, F., Korytár, R., Tewari, S., and van Ruitenbeek, J. M. (2020). Ad-
vances and challenges in single-molecule electron transport. Reviews of Modern Physics,
92(3):035001.

[Galperin and Nitzan, 2005] Galperin, M. and Nitzan, A. (2005). Current-induced light emis-
sion and light-induced current in molecular-tunneling junctions. Physical review letters,
95(20):206802.

[Galperin and Nitzan, 2006] Galperin, M. and Nitzan, A. (2006). Optical properties of current car-
rying molecular wires. The Journal of chemical physics, 124(23):234709.

[Galperin et al., 2006] Galperin, M., Nitzan, A., and Ratner, M. A. (2006). Resonant inelastic
tunneling in molecular junctions. Physical Review B, 73(4):045314.

[Gauger et al., 2008] Gauger, E. M., Nazir, A., Benjamin, S. C., Stace, T. M., and Lovett, B. W.
(2008). Robust adiabatic approach to optical spin entangling in coupled quantum dots. New
Journal of Physics, 10(7):073016.

[Gehring et al., 2019] Gehring, P., Thijssen, J. M., and van der Zant, H. S. (2019). Single-molecule
quantum-transport phenomena in break junctions. Nature Reviews Physics, 1(6):381–396.

[Greiner et al., 2012] Greiner, W., Neise, L., and Stöcker, H. (2012). Thermodynamics and statis-
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Appendix A

Redfield equation

Writing the nanojunction Hamiltonian in Eq. (2.22) as

Ĥ = Ĥ0 + ĤI , Ĥ0 = ĤC + ĤE , (A.1)

any operator Â in the Schrödinger picture could be written in interaction picture Â,(t) respect to
ĤI , and vice versa, following the transformations

Â,(t) = ÛÂÛ†, Â = Û†Â,(t)Û , (A.2)

where the operator Û = exp
(
iĤ0t

)
is a unitary transformation.

The Liouville equation (see Eq. (2.8)) for the nanojunction density operator in the interaction
picture ρ̂, becomes

d

dt
ρ̂,(t) = −i

[
Ĥ,

I(t), ρ̂
,(t)
]
, (A.3)

where Ĥ,
I(t) is the Hamiltonian interaction in the interaction picture. Applying direct integration

from t0 to t in Eq.(A.3), is obtained

ρ̂,(t) = ρ̂,(t0)− i

∫ t

t0

dt,
[
Ĥ,

I(t
,), ρ̂,(t,)

]
, (A.4)

which, inserted in Eq. (A.3),

d

dt
ρ̂,(t) = −i

[
Ĥ,

I(t), ρ̂
,(t0)

]
−
∫ t

t0

dt,
[
Ĥ,

I(t),
[
Ĥ,

I(t
,), ρ̂,(t,)

]]
, (A.5)

add a term in second power of Ĥ,
I .
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Writing the density operator as Eq. (3.1), the conducting array dynamics from the Eq. (A.5) gives

d

dt
ρ̂,C(t) = −

∫ t

t0

dt,TrE

[
Ĥ,

I(t),
[
Ĥ,

I(t
,), ρ̂,C(t

,)⊗ ρ̂E

]]
, (A.6)

where it was verified
TrE [Ĥ,

I(t), ρ̂
,
C(t0)⊗ ρ̂E ] = 0, (A.7)

because of the form of ĤI (see Eq. (2.54)) and ρ̂E (see Eq. (3.2)).
Considering Markov approximation (ρ̂,C(t

,) ≈ ρ̂,C(t)) and the transformation t, = t−τ , the Eq. (A.6)
becomes

d

dt
ρ̂,C(t) = −

∫ ∞

0

dτTrE

[
Ĥ,

I(t),
[
Ĥ,

I(t− τ), ρ̂,C(t)⊗ ρ̂E

]]
, (A.8)

where the integral was extended to t− t0 → ∞ because of the low correlation decay time.
Writing the conducting array dynamics in the Schrödinger picture, is obtained the Redfield equation
shown in Eq. (3.3) [Breuer et al., 2002,Timm, 2008].
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Appendix B

Lindbland quantum master equation

Consider the conducting array Hamiltonian ĤC in terms of the eigenstates as Eq. (2.38); the
reservoir Hamiltonians from Eq. (3.2),

Ĥλ =
∑
x

ωxû
†
λ,xûλ,x, (B.1)

written in terms of annihilation and creation operators, ûλ,x and û†λ,x, respectively, of particles at
the reservoir λ and mode x with energy ωx; and the interaction Hamiltonian ĤI from Eq. (2.54) in
separable form as

ĤI =
∑
λ

(
ŜλR̂λ + Ŝ†

λR̂
†
λ

)
, ĤI(t) =

∑
λ

(
Ŝλ(t)R̂λ(t) + Ŝ†

λ(t)R̂
†
λ(t)

)
, (B.2)

in the Schrödinger and interaction picture (transformation in Eq. (A.2)), respectively, where the
conducting array part Ŝλ (see Table B.1) could be written in terms of conducting array eigenstates
as

Ŝλ =
∑
n,m

S(n,m)
λ L̂n,m, Ŝλ(t) =

∑
n,m

S(n,m)
λ exp (iωn,mt) L̂n,m, (B.3)

whit S(n,m)
λ = ⟨en| Ŝλ |em⟩, L̂n,m = |en⟩ ⟨em| and ωn,m = ωn − ωm, while the reservoir part (see

Table B.1) has a form

R̂λ =
∑
x

V (λ)
x ûλ,x, R̂λ(t) =

∑
x

V (λ)
x exp (−iωxt) ûλ,x, (B.4)

whit V (λ)
x the coupling constants of mode x and reservoir λ .
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Table B.1: Conducting array part, Ŝλ, and reservoir part, R̂λ, of interaction Hamiltonians in Eq.
(2.54).

Reservoir (λ) Conducting array part (Ŝλ) Reservoir part (R̂λ)

Left lead
∑

i,α u
(L)
i ĉ†i,α

∑
k V

(L)
k ĉL,k

Right lead
∑

i,α u
(R)
i ĉ†i,α

∑
k V

(R)
k ĉR,k

Radiation
∑

i,α>α, u
(rad)
i ĉ†i,αĉi,α,

∑
p V

(rad)
p ârad,p

Phonon
∑

i,α u
(ph)
i ĉ†i,αĉi,α

∑
q V

(rad)
q âph,q

The environment density operator ρ̂E in Eq. (3.2), describes any reservoir λ as thermal density
operators (see Sec. 2.1.4)

ρ̂λ =


exp(−β0(Ĥλ−µλN̂λ))

Z , Z =
∏

x (1 + exp (−β0(ωx − µλ)))
−1
, Fermions

exp(−β0Ĥλ)
Z , Z =

∏
x (1− exp (−β0ωx))

−1
, Bosons

(B.5)

for fermion and boson reservoirs, respectively, where the number operator of particles in the reser-
voir λ is written as

N̂λ =
∑
x

û†λ,xûλ,x. (B.6)

Based on the interaction Hamiltonian in Eq. (B.2), the term

I = TrE

[
ĤI ,

[
Ĥ,

I(−τ), ρ̂C ⊗ ρ̂E

]]
(B.7)

from the Redfield equation in Eq. (3.3) becomes

I =
∑
λ

[ (
Ŝ†
λŜλ(−τ)ρ̂C − Ŝλ(−τ)ρ̂C Ŝ†

λ

)
Cλ(τ) +

(
ρ̂C Ŝ†

λ(−τ)Ŝλ − Ŝλρ̂C Ŝ†
λ(−τ)

)
Cλ(−τ)

+
(
ŜλŜ†

λ(−τ)ρ̂C − Ŝ†
λ(−τ)ρ̂C Ŝλ

)
C̃λ(τ) +

(
ρ̂C Ŝλ(−τ)Ŝ†

λ − Ŝ†
λρ̂C Ŝλ(−τ)

)
C̃λ(−τ)

]
,

(B.8)

where has been defined the reservoir correlation functions,

Cλ(τ) = ⟨R̂†
λR̂λ(−τ)⟩ =

∑
x

|V (λ)
x |2 exp(iωxτ)Trλ

[
ρ̂λû

†
λ,xûλ,x

]
,

C̃λ(τ) = ⟨R̂λR̂†
λ(−τ)⟩ =

∑
x

|V (λ)
x |2 exp(−iωxτ)Trλ

[
ρ̂λûλ,xû

†
λ,x

]
.

(B.9)
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Whit the thermal density operators in Eq. (B.5), the correlations in Eq. (B.9) are reduced to

Cλ(τ) = ⟨R̂†
λR̂λ(−τ)⟩ =


∑

x |V
(λ)
x |2f (x)λ exp (iωxτ) , Fermions

∑
x |V

(λ)
x |2n(x)λ exp (iωxτ) , Bosons

C̃λ(τ) = ⟨R̂λR̂†
λ(−τ)⟩ =


∑

x |V
(λ)
x |2f̃ (x)λ exp (−iωxτ) , Fermions

∑
x |V

(λ)
x |2ñ(x)λ exp (−iωxτ) , Bosons

(B.10)

where has been defined the fermion and boson density,

fλ(ωx) ≡ f
(x)
λ = 1− f̃

(x)
λ = (exp (β0(ωx − µλ)) + 1)

−1
,

nλ(ωx) ≡ n
(x)
λ = ñ

(x)
λ − 1 = (exp (β0ωx)− 1)

−1
,

(B.11)

respectively, at energy ωx.

Whit conducting array part in Eq. (B.3) and correlations in Eq. (B.10), the term I in Eq. (B.8)
becomes

I =
∑
λ

∑
n,m,i,j

S(n,m)
λ S(i,j)∗

λ

[ (
L̂†
i,jL̂n,mρ̂C − L̂n,mρ̂CL̂

†
i,j

)
Cλ(τ) exp (−iωn,mτ)

+
(
ρ̂CL̂

†
i,jL̂n,m − L̂n,mρ̂CL̂

†
i,j

)
Cλ(−τ) exp (iωi,jτ)

+
(
L̂n,mL̂

†
i,j ρ̂C − L̂†

i,j ρ̂CL̂n,m

)
C̃λ(τ) exp (iωi,jτ)

+
(
ρ̂CL̂n,mL̂

†
i,j − L̂†

i,j ρ̂CL̂n,m

)
C̃λ(−τ) exp (−iωn,mτ)

]
,

(B.12)

which, in the interaction picture,

I , =
∑
λ

∑
n,m,i,j

S(n,m)
λ S(i,j)∗

λ exp (i(ωn,m − ωi,j)t)
[ (
L̂†
i,jL̂n,mρ̂

,
C − L̂n,mρ̂

,
CL̂

†
i,j

)
Cλ(τ) exp (−iωn,mτ)

+
(
ρ̂,CL̂

†
i,jL̂n,m − L̂n,mρ̂

,
CL̂

†
i,j

)
Cλ(−τ) exp (iωi,jτ)

+
(
L̂n,mL̂

†
i,j ρ̂

,
C − L̂†

i,j ρ̂
,
CL̂n,m

)
C̃λ(τ) exp (iωi,jτ)

+
(
ρ̂,CL̂n,mL̂

†
i,j − L̂†

i,j ρ̂
,
CL̂n,m

)
C̃λ(−τ) exp (−iωn,mτ)

]
,

(B.13)

oscillates as a function of time with frequency ωn,m − ωi,j , at least n = i and m = j as secular
approximation.

The reconstruction of the Redfield equation needs to integrate the correlation functions, which,
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Table B.2: Effective transfer rates, κ(n,m)
λ and κ̃(n,m)

λ , for reservoir λ.

λ κ
(n,m)
λ κ̃

(n,m)
λ

L γ
(n,m)
L f

(n,m)
L | ⟨en|

∑
i,α u

(L)
i ĉ†i,α |em⟩ |2 γ

(n,m)
L f̃

(n,m)
L | ⟨en|

∑
i,α u

(L)
i ĉ†i,α |em⟩ |2

R γ
(n,m)
R f

(n,m)
R | ⟨en|

∑
i,α u

(R)
i ĉ†i,α |em⟩ |2 γ

(n,m)
R f̃

(n,m)
R | ⟨en|

∑
i,α u

(R)
i ĉ†i,α |em⟩ |2

rad γ
(n,m)
rad n

(n,m)
rad | ⟨en|

∑
i,α>α, u

(rad)
i ĉ†i,αĉi,α, |em⟩ |2 γ

(n,m)
rad ñ

(n,m)
rad | ⟨en|

∑
i,α>α, u

(rad)
i ĉ†i,αĉi,α, |em⟩ |2

ph γ
(n,m)
ph n

(n,m)
ph | ⟨en|

∑
i,α u

(ph)
i ĉ†i,αĉi,α |em⟩ |2 γ

(n,m)
ph ñ

(n,m)
ph | ⟨en|

∑
i,α u

(ph)
i ĉ†i,αĉi,α |em⟩ |2

through the Cauchy principal value theorem, are

∫ ∞

0

dτCλ(±τ) exp (∓iωn,mτ) =


1
2γ

(n,m)
λ f

(n,m)
λ , Fermions

1
2γ

(n,m)
λ n

(n,m)
λ , Bosons

∫ ∞

0

dτC̃λ(±τ) exp (±iωn,mτ) =


1
2γ

(n,m)
λ f̃

(n,m)
λ , Fermions

1
2γ

(n,m)
λ ñ

(n,m)
λ , Bosons

(B.14)

where has been defined the spectral density,

γλ(ω) = π
∑
x

|V (λ)
x |2δ(ω − ωx), (B.15)

such γ(n,m)
λ = γλ(ωn,m) is the spectral density at transition frequency ωn,m, and the typical Lamp

shift has been ignored.

Writing I, from Eq. (B.12), in the secular approximation and the integrated correlation functions
as Eq. (B.14), the Redfield equation becomes in the Lindbland quantum master equation shown
in Eq. (3.4), where the effective transfer rates, κ(n,m)

λ and κ̃(n,m)
λ , are shown in the Table B.2.
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Appendix C

Reservoir particles evolution

The evolution of the nanojunction density operator ρ̂ in the Schrödinger picture and Markov ap-
proximation, from the Eq. (A.5), is given by

d

dt
ρ̂ = −i

[
ĤC , ρ̂

]
− i Û†

[
Ĥ,

I(t), ρ̂
,(t0)

]
Û −

∫ ∞

0

dτ
[
ĤI

[
Ĥ,

I(−τ), ρ̂
]]
, (C.1)

where Û was defined in Eq. (A.2). With N̂λ the number operator of particle in the reservoir λ (see
Eq. (B.6)), based on the Eq. (C.1), the variation of particles is given by,

d

dt
⟨N̂λ⟩ = −Tr

[
N̂λ

∫ ∞

0

dτ
[
ĤI ,

[
Ĥ,

I(−τ), ρ̂C ⊗ ρE

]]]
, (C.2)

where Tr performs the trace over the conducting array and the environment.
Whit the interaction Hamiltonian ĤI in Eq. (B.2), the Eq. (C.2) becomes

d

dt
⟨N̂λ⟩ = −

∫ ∞

0

dτTrC

[ (
Ŝ†
λŜλ(−τ)ρ̂C

)
Cλ(τ) +

(
ρ̂C Ŝ†

λ(−τ)Ŝλ

)
Cλ(−τ)

−
(
Ŝ†
λ(−τ)ρ̂C Ŝλ

)
C̃λ(τ)−

(
Ŝ†
λρ̂C Ŝλ(−τ)

)
C̃λ(−τ)

]
,

(C.3)

where the correlations where defined in Eq. (B.10). Writting the conducting array part as Eq. (B.3)
and the principal value theorem in Eq. (B.14), the Eq. (C.3) in secular approximation is,

d

dt
⟨N̂λ⟩ = −

∑
n,m

TrC

[
κ
(n,m)
λ

2

(
L̂†
n,mL̂n,mρ̂C + ρ̂CL̂

†
n,mL̂n,m

)
− κ̃

(n,m)
λ L̂†

n,mρ̂CL̂n,m

]
, (C.4)

where the effective transfer rates κ
(n,m)
λ and κ̃

(n,m)
λ are shown in Table B.2. Tracing over the

conducting array degrees of freedom, the Eq. (C.4) becomes

d

dt
⟨N̂λ⟩ = −

∑
n,m

(
κ
(n,m)
λ ρm − κ̃

(n,m)
λ ρn

)
. (C.5)
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