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Resumen

En esta tesis, estudiamos la interacción de largo alcance entre átomos alcalinos de Rydberg con
estructura fina (n2lj ; l ≤ 2, 15 ≤ n ≤ 150) y moléculas alcalinas heteronucleares en el estado
base electrónico y rovibracional (X1Σ+; v = 0, J = 0). Utilizando teorı́a de perturbaciones para
la expansión multipolar en coordenadas esféricas para el potencial de largo alcance, calculamos
los coeficientes de dispersión C6 asociados a la interacción entre pares átomo-molécula que
involucran átomos de 133Cs y 85Rb interactuando con moléculas de KRb, LiCs, LiRb, and RbCs.
Los coeficientes de dispersión C6 dependen de la función de polarizabilidad atómica y molecular
de los estados de las partı́culas interactuantes. La magnitud y naturaleza de la interacción es
altamente dependiente del estado de Rydberg y puede ser ajustado con precisión a un polinomio
O(n7) para un rango de números cuánticos principales 40 ≤ n ≤ 150. Para todos los pares
átomo-molécula considerados, los estados de Rydberg con l = 0, 1 tiene interacciones atractivas,
mientras que para algunos pares interactuantes con l = 2, la interacción resulta ser repulsiva.
La energı́a de interacción a distancias mayores al radio de LeRoy escala como n−5 para n > 40.
Para valores intermedios n . 40, la energı́a de interacción tanto atractiva como repulsiva está en
el orden de los 10−1000µK para casos especı́ficos. La exactitud de los coeficientes C6 calculados
está limitada por la calidad de los defectos cuánticos atómicos, con errores relativos estimados
no mayores a 1% en promedio.

iii



Abstract

In this thesis, we study the long-range interaction between Rydberg alkali-metal atoms with fine
structure (n2lj ; l ≤ 2, 15 ≤ n ≤ 150) and heteronuclear alkali-metal dimers in the ground rovi-
brational state (X1Σ+; v = 0, J = 0). Using perturbation theory for the multipolar expansion
in spherical coordinates of the long-range potential, we compute the associated C6 dispersion
coefficients of atom-molecule pairs involving 133Cs and 85Rb atoms interacting with KRb, LiCs,
LiRb, and RbCs molecules. The C6 dispersion coefficients depend on the atomic and molecular
dynamical polarizability of the interacting particles. The magnitude and nature of the interaction
is highly dependent on the Rydberg atomic polarizability and can be accurately fitted to a state-
dependent polynomial O(n7) over the range of principal quantum numbers 40 ≤ n ≤ 150. For
all atom-molecule pairs considered, Rydberg states n2Sj and n2Pj result in attractive 1/R6 po-
tentials. In contrast, n2Dj states can give rise to repulsive potentials for specific atom-molecule
pairs. The interaction energy at the LeRoy distance approximately scales as n−5 for n > 40. For
intermediate values of n . 40, both repulsive and attractive interaction energies in the order of
10 − 1000µK can be achieved with specific atomic and molecular species. The accuracy of the
reported C6 coefficients is limited by the quality of the atomic quantum defects with relative errors
∆C6/C6 estimated to be no greater than 1% on average.
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Chapter 1

Introduction

Long-range forces arise from the interaction between well-defined charge distributions at distances
between tens to thousands of Bohr radii. These charge distributions can correspond to atoms,
molecules, or any other polarizable particle. The interactions energies are small compared with
the energy of each interacting particle. Therefore, they must be treated pertubatively and can be
relevant in the dynamics of ultracold gases and ultracold collisions processes.

In order to study intermolecular potentials in materials, experimental methods such as spec-
troscopy, scattering and crystallography have been used. To model the intermolecular potential
energy, general expressions have been developed. One example is the well-known Lennard-Jones
potential [1]

VLJ = 4ε

[(
R0

R

)12

−
(
R0

R

)6
]
, (1.1)

where ε is the depth of the potential well, R0 is the distance where VLJ(R0) = 0 and R is the
relative distance between the two centers of mass of the system. Figure 1.1 shows a characteristic
Lennard-Jones potential energy curve for a real diatomic molecular system with ε = −0.00429

hartrees and R0 = 7.05 a0 [2]. There is also a minimum in Figure 1.1 at R = Rm = 7.88 a0,
which defines the limit between the repulsive short-range (R < Rm) and the attractive long-range
(R > Rm). The long-range scaling R6 is characteristic of the van der Waals interaction.

The potential curve in Figure 1.1 allows us to set an energy reference for a system composed of
a pair of particles approaching each other from infinity. For a relative kinetic energy on the order
of the potential well, the collision processes will be insensitive to the long-range tail. If the relative
kinetic energy of the incoming particles is negligible in comparison with the potential well, then the
collision dynamics is very sensitive to the long-range tail. The latter case is relevant for the study
of few- and many-body physics in the ultracold regime [2].

At infinite distances, the intermolecular potential energy tends to zero, but we can set a relative
distance R = RvdW beyond which we can neglect the potential energy compared with the internal
energy of the collision partners. On the other hand, for distances R < RLR short-range processes
take place, i.e. the long-range region goes from RLR up to RvdW , where RLR < RvdW .
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CHAPTER 1. INTRODUCTION

Figure 1.1: Lennard-Jones potential energy curve according to eq. (1.1) for a realistic neutral
diatomic molecule. Using ε = −0.00429 hartrees and R0 = 7.05 a0, where the minimum is found at
R = Rm = 7.88 a0. Figure taken from Ref. [2]

The characteristic distanceRLR is is known as the LeRoy radius [3], which is the minimum distance
at which the particles conserve their identity, i.e. their electronic clouds do not overlap. It is given
by

RLR = 2

[√
〈r2
A〉+

√
〈r2
B〉
]
, (1.2)

where rA and rB are the mean radii of interacting particles A and B.

The long-range tail varies as C6/R
6, where C6 is known as the van der Waals coefficient. The

energy and the distance of the van der Waals interaction can also be characterized by [4]

EvdW =
1

2

(
~2

2µR2
vdW

)
(1.3)

and

RvdR =
1

2

(
2µ|C6|
~2

)1/4

, (1.4)

where µ is the reduced mass of the interacting particles. The van der Waals energy EvdW is
commonly larger than the relative kinetic energy of particles in the ultracold regime. For kinetic en-
ergies below EvdW , the wavefunction of the colliding particles around RvdW can not be described
semi-classically, but purely quantum mechanically [2].

In general, we denote as van der Waals interaction to all those interactions that scale as 1/R6.

2



CHAPTER 1. INTRODUCTION

Physically, the origin of the long-range interaction involves permanent or instantaneous inhomo-
geneities of the interacting charge distributions, and include the London interactions [5], Debye
interactions [6] and the Keesom interactions [7].

The van der Waals interaction is not always relevant for gases at room temperature. However, for
ultracold gases, the collision dynamics is widely dominated by the long-range tail. Over the last
decades, with the development of laser trapping and cooling techniques, the study of long-range
interactions for specific systems and their potential application has received special attention in
atomic, molecular and optical physics. One of the systems with remarkable applications in a
wide variety of areas are Rydberg atoms interacting in the long-range with diatomic molecules.
These interacting particles can exchange excitation energies in the microwave regime via Foster
processes, which has been proposed as tool for non-destructive detection of molecular states in
hybrid molecule-Rydberg systems [8, 9]. Simultaneous trapping of ultracold Rydberg atoms and
polar molecules may also be used for direct sympathetic cooling of molecules intro the ultracold
regime –a long-standing goal in ultracold physics– through elastic van der Waals atom-molecule
collisions [10, 11]. In comparison with dipole-dipole processes, van der Waals collisions do not
require molecules to be confined in low-dimensional traps in the presence of static electric fields
for shielding detrimental attractive collisions that lead to trap loss [12]. Moreover, van der Waals
interactions can be strong even if the relevant transition energies in the collision partners are
not resonant, as opposed to Foster processes. Understanding the feasibility of the promising
applications of molecule-Rydberg systems thus requires an accurate knowledge of the van der
Waals interaction potentials.

In this thesis, we consider atom-molecule systems at low kinetic energies. We focus on alkali-
atoms in Rydberg states and polar diatomic molecules in their electronic and rovibrational ground
state. Rydberg atoms have exaggerated properties such as orbital sizes of thousands of Bohr
radii, long radiative lifetime exceeding microseconds and are extremely sensitive to static electric
fields. On the other hand, diatomic molecules have been widely studied and are well characterized
and understood in different regimes. At low temperatures, it is possible to prepare atoms and
molecules in well-defined quantum states.

The long-range interaction potential of the molecule-Rydberg system is treated perturbatively
in comparison with the energy of the Rydberg atom (including the spin-orbit coupling) and the
rotational energy of the molecule. Thus, the potential is written as an expansion of the form
V (R) =

∑
n Cn/R

n, with n ≥ 3. Since we consider atom-molecule interactions for molecules in
their rovibrational ground state, the lowest non-vanishing van der Waals coefficient is found to be
C6 [13, 14, 15].

We compute a large set of van der Waals C6 coefficients that determine the long-range interaction
between selected heteronuclear alkali-metal dimers (LiCs, RbCs, LiRb and KRb) in their electronic
and rovibrational ground state (1Σ+, v = 0, J = 0) with 85Rb and 133Cs atoms in Rydberg states
n2lj with 15 ≤ n ≤ 150. n is the atomic principal quantum number, l is the atomic orbital angular
momentum, j is the total electronic angular momentum, ν the vibrational quantum number of the
molecule and J is the rotational angular momentum. We focus on molecular [16, 17, 18, 19] and
Rydberg atom species [20, 21] that are experimentally relevant.
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CHAPTER 1. INTRODUCTION

The rest of the thesis is organized as follows: in Chapter 2, we describe the theoretical treat-
ment of the Rydberg wavefunctions and compute numerically the atomic dynamical polarizabilities
for Rubidium and Cesium atoms in Rydberg states. An overview of the closed-shell diatomic
molecules is given in Chapter 3, where we use the Born-Oppenheimer approximation, the adi-
abatic approximation and the rigid rotor model to obtain the molecular wavefunctions, energies
and the dynamical polarizability of ground state alkali-molecules. Chapter 4 is dedicated to the
long-range interaction between Rydberg atoms and molecules. We use the multipolar expansion
in spherical coordinates of the long-range interaction, together with pertubation theory, to treat
this interaction potential and write it in terms of the atomic and molecular dynamical polarizability
functions at imaginary frequencies. We also present the scaling of the C6 coefficients with the
atomic principal quantum number and the effect on the interaction of the molecular dipole mo-
ment. Finally, in Chapter 5 we summarize our work and discuss the envisioned applications of our
results.
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Chapter 2

Alkali-Metal Rydberg Atoms

Atomic Rydberg states [22] are highly excited electronic states with a high principal quantum
number n. They were predicted at the end of 19th century for the Balmer’s wavelength formula for
atomic hydrogen [23]

λ =
bn2

n2 − 4
, (2.1)

where b = 3645.6 Å and the wavelegths are given for transitions from n = 2 to atomic states with
higher principal quantum number. The inverse of eq. (2.1) gives the energy difference between
the states, in frequency units

ν =
1

4b

(
1

4
− 1

n2

)
. (2.2)

Hydrogen was the first atom to be quantitatively understood. Later Liveing and Deway [24] made
important contributions to atomic spectroscopy by observing the spectral lines of sodium. After
Liveing and Dewar, Rydberg worked with alkali atoms and classified their spectral lines into sharp,
principal and diffuse [25] indentifying spectral series with common lower level but upper level in be
ns, np and nd states. The frequencies for each series could be expressed as

νi = ν∞i −
Ry

(n− δi)2
, (2.3)

with i = s, p, d where ν∞i are constants and δi are the so-called quantum defects of the sharp,
principal and diffuse series. Ry is the well-known universal Rydberg constant with a value equal
to 109721.6 cm−1.

It was not until Bohr’s model [23] of the hydrogen atom that the meaning of a high n value became
clear. For an electron moving in a circular orbit around the atomic core, the assumtion that the
angular momentum was quantized in integral units of ~ = h/2π (h is the Plank’s constant), along
with the observation that the electron does not continuously radiate around a classical orbit, but
has well defined energies, allowed Bohr to define and orbital radius given by

rn =
4πε0~2n2

Ze2m
, (2.4)

5



CHAPTER 2. ALKALI-METAL RYDBERG ATOMS

Property Formula x

Binding Energy En −RRyd

(n∗)2 −2

Energy spacing En − En−1 −3

Orbital radius 〈r〉 1
2 (3(n∗)2 − l(l + 1)) 2

Geo. cross section π 〈r〉 4

Dipole moment 〈nd|er|nf〉 2

Polarizability 2
∑
n′l′m′

|〈nlm|z|n′l′m′〉|2
Enl−En′l′

7

Radiative lifetime 2.09ns(n∗)2.85 3

Fine-structure 4.8× 106 MHz 5/2(n∗)−3 −3

Table 2.1: Properties of the Rydberg atoms, formula and its scaling power x with the effective
principal quantum number n∗x. Table taken from Ref. [27].

where ε is the vacuum electric permittivity, Z is the atomic number of the atom, e is the electric
change of the electron andm the electron mass. Eq. (2.4) showed how the orbital radius increased
with the principal quantum number n. The energy W of the state thus decreases with n as

W = − Z2e4m

32π2ε2~2n2
. (2.5)

The energy difference between two atomic states with principal quantum numbers n1 and n2 is
given by,

δW = W2 −W1 = − Z2e4m

32π2ε2~2

(
1

n2
1

− 1

n2
2

)
, (2.6)

where Ry = Z2e4m
32π2ε2~2 is the Rydberg constant.

The energy dependence with the principal quantum number W ∼ 1/n2 means that for high n the
valence electron is in a loosely bound orbit. This loosely bound electron character of a Rydberg
electron confers Rydberg atoms with exotic properties. One of these well-known properties is their
mean radius: for the ground state hydrogen atom the mean radius is about 1 a0 with a binding
energy of 1 Ry, while for n = 10 these mean radius is about 100 a0 and has a binding energy of
the order 0.01 Ry. Another important property is the geometric cross section, which scales as n4.
For ground state atoms the geometric cross section is 1 a2

0, while for n = 10 is 104 a2
0.

The difference between ground state atoms and Rydberg atoms is highlighted when the atoms are
exposed to an external electric field. Rydberg atoms are very sensitive to external perturbations.
For eletric fields on the order of 106 V/cm [26], Rydberg atoms can be ionized, while the ground
state is barely perturbed by these electric field magnitudes. This sensitivity is due the dipole
moment and the polarizability of the Rydberg atoms, which scale as n2 and n7, respectively. Also,
the diamagnetic energy shifts are considerably large compared to ground states. These shifts
depend on the area of the orbit, increasing as n4. These responses to external fields make the
Rydberg atoms an useful platform to study light-matter interaction.

Table 2.1 shows some of the properties of Rydberg atoms with a single Rydberg electron and their
scaling with the effective principal quantum number n∗.

The development of atomic theory and high resolution absorption spectroscopy allowed the study

6



CHAPTER 2. ALKALI-METAL RYDBERG ATOMS

of Rydberg atoms in the 1970’s. The first studies to Rydberg atoms aimed to demostrate their
exotic properties.

Amaldi and Segre [28] studied the energy shifts of the Rydberg series for K in the presence of
a rare atomic gas medium. Since the space between the Rydberg electron and the ionic core is
filled with a dielectric medium, red shifts were expected for the atomic transitions. These were
observed for K, Ar and He, but for Ne only blue shifts where observed. This observations were
latter explained by a theory developed by Fermi [29], in which the energy shifts come from the
short range scattering of the Rydberg electron and the atoms in the gas. In 2000, using the
Fermi pseudopotential for the short range scattering in the ultracold regime, C. H. Greene, A.
S. Dickinson and H. R. Sadeghpour [30] predicted that the oscillatory probability density of the
Rydberg electron can create long-range potential wells that are suitable to trap surrouding atoms.
Those exotic molecules are known as ultralong-range Rydberg molecules and were observed
experimentally in 2009 by V. Bendkowsky et al. [31].

Rydberg atoms have been widely studied at room temperature and the effect of an electrid field in
these atoms have been continuously studied and observed due to its potential to create techniques
for detection and manupulation of Rydberg atoms. Together with the development of the tunable
dye laser [32], it was possible to excite a large number of atoms in a well-defined Rydberg level.
This method allowed the measuarement of several properties such as collision cross sections,
transition energies and radiative lifetimes for low lying Rydberg levels.

The exaggerated response of Rydberg atoms to the radiation field has motivated the use of these
atoms for testing the interaction with the vacuum of a resonant cavity [33]. In the low frecuency
regime of high Rydberg state, the wavelengths are sufficiently large to facilitates the design of
microwave cavities and the radiative decay rates are also appropriate for the system.

Advances in laser technology, cooling and trapping techniques led to the creation of Rydberg
atoms in the ultracold regime. Nowadays it is possible to excite the atoms of an alkali gas into
a Rydberg level and trap them with a high density of the order of (1014cm−3) in the µK regime
[34]. Such a high density gas allows the to study of Rydberg-Rydberg interactions [35], which that
can be tuned by changing the density of the gas or the principal quantum number of the excited
atoms. The Rydberg-Rydberg van der Waals interaction scales as n11 and is strong enough to
create molecular Rydberg state with bound lengths of the order of thousand of Bohr radii [36].

Quantum information processing is another area in which Rydberg atoms can also be exploited.
By using the strong dipole-dipole interactions between Rydberg atoms, fast phase gates have
been implemented [37], where the ground state levels are used to store information, while the
Rydberg states that strongly interact create the entangled states. For a short period, the atoms
will be decoupled from the environment decreasing the decoherence. For mesoscopic systems,
Lukin [38] proposed to forget about the tricky single atom control by using the dipole blockade in
which the interaction between excited atoms inhibits several Rydberg exitation in the neighboring
atoms.

These application along with the description given in Chapter 1 are some of the applications that
show the richness of Rydberg physics. This chapter explains the theoretical treatment used to

7



CHAPTER 2. ALKALI-METAL RYDBERG ATOMS

study Rydberg atoms and elaborates on some of their physical properties that are required to
understand the role of Rydberg atoms when they interact with ground state molecules in the long-
range.

2.1 Rydberg atom wavefunctions

This section discusses the theoretical treatment of the Rydberg alkali-atom wavefunction. We use
a hydrogen-like Schrödinger equation to model the electron-core system. We use an effective
radial interaction potential Vl(r) (r is the distance between the electron and the ionic core) that
accounts for the effect of the inner electrons of the core over the valence electron and behaves
as a Coulomb potential at large distances (r → ∞). The Rydberg energies are described using
the quantum defects δnlj and the spin-orbit coupling of the atom is mapped through the quan-
tum defects by adding a dependence of the total angular momentum j. Hyperfine structure is
neglected.

The radial Schrödinger equation obtained at the end of the next section is solved numerically
using the Numerov algorithm. These numerical wavefunctions allow us to study several properties
of Rydberg alkali-atoms.

Atomic units are used throughout this Thesis unless otherwise stated.

2.1.1 Schrödinger equation

We start with the Schrödinger equation of the electron-core system written in terms of the relative
distance r and the relative angular orientation (θ, ϕ),[

−∇
2

2µ
+ Vl(r)

]
Ψ(r, θ, ϕ) = En,lΨ(r, θ, ϕ), (2.7)

where µ = memc/(me + mc) is the reduced mass, mc is the mass of the nucleus plus the inner
electrons and me is the electron mass. En,l is the energy of the valence electron, which depends
on the principal quantum number n and the orbital angular momentum l. The effective interaction
potential depends on the orbital angular momentum as well. Ψ(r, θ, φ) is the wavefunction of the
system.

The ∇2 operator in spherical coordinates is given by

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (2.8)

The square of angular momentum operator l2 can be written in spherical coordinates as,

l2 =
1

sin θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2
. (2.9)
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Therefore, eq. (2.8) can be written as

∇2 =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2
l2. (2.10)

Inserting eq. (2.10) into the Schrödinger eq. (2.7) gives[
− 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r

)
+

l2

2µr2
+ Vl(r)

]
Ψ(r, θ, ϕ) = En,lΨ(r, θ, ϕ). (2.11)

The system wavefunction can be separated into a radial and angular part as Ψ(r, θ, φ) = R(r) ×
Y ml (θ, φ), where Y ml (θ, φ) is the spherical harmonic of order l with component m, explicitly given
by

Y ml (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ)eimϕ, (2.12)

where Pml are the associated Legendre polynomials [39]. The angular equation (in units ~ = 1)
can be written as l2Y ml = l(l + 1)Y ml . The radial equation is thus given by(

− 1

2µ

[
d2

dr2
+

2

r

d

dr

]
+

[
l(l + 1)

2µr2
+ Vl(r)− En,l

])
R(r) = 0. (2.13)

2.1.2 Atomic State notation

For alkali-atoms, we must consider the electronic spin angular momentum s, which is coupled to
the orbital angular moment operator l to form the total angular momentum operator j = l+s, which
is a vector addition of l and s and follows the so-called triangular condition, namely

m = ml +ms (2.14)

and
|l − s| ≤ j ≤ |l + s| (2.15)

where m,ml,ms are the projection of j, l, s in the reference frame, respectively, and j, l, s are the
magnitude of the corresponding vectors. For the Rydberg alkali-atoms considered in this Thesis
(133Cs and 85Rb), the electronic spin is s = 1/2.

We will refer to an atomic Rydberg state by their quantum numbers n, l, s, j,m using indistinctly
the state notations |n(ls)jm〉, or |nljm〉, or |n2s+1lj ,m〉 = |n2lj ,m〉.

2.1.3 Core potential

Marinescu et al. [40] developed a model that accounts for the penetration and polarization of the
atomic core due to the valence electron. For a valence electron with low-lying angular momentum
(l ≤ 3) its orbit is elliptic and can create an unscreened nuclear charge that affects the Coulombic

9
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Figure 2.1: Core potential Vl(r) for Rubidium with l = 0, 1, 2, 3 using the parameters ai (i =
1, 2, 3, 4) tabulated in Table 2.2. Vl is compared with the Coulomb potential −Z/r.

behavior of the potential at short distances. Explicitly, Vl(r) has the form [40]

Vl(r) = −Zn,l(r)
r

− αc
2r4

(
1− e−(r/rc)6

)
, (2.16)

where αc is the static dipole polarizability of the core, and rc ∼ α1/3
c is the critical penetration radius

between the valence electron and the core at which the short range contribution to the effective
potential (2.16) is not well defined. The first term is related to the core penetration, similar to the
Coulomb potential with an effective charge Zn,l of the core, that is given by

Zn,l = 1 + (Z − 1)e−a1r − r(a3 + a4r)e
−a2r, (2.17)

where Z is the regular nuclear charge of the atom, ai (i = 1, ..., 4) are parameters that depend on
the atomic species and on the angular momentum of the valence electron. The parameters ai are
tabulated in Table 2.2 for different alkali-atoms.

The second term in eq. (2.16) accounts for the core polarization due to the electron and describes
the long range potential mostly determined by the core polarizability αc, which depends of number
of electrons in the core. This potential was parametrically fitted to one-electron energy level with
an accuracy of 10−5 and successfully predicted several resonant phenomena observed in alkali-
atoms. Fig. 2.1 shows the core potential function Vl(r) for Rubidium using the potential parameters
of Table 2.2 for l = 0, 1, 2, 3. Vl tends to zero faster that the Coulomb potential for the same atom.

2.1.4 Quantum defects

The electrons in the core for alkali-atoms also influence the energy of the valence electron and
this is the main difference between hydrogen and alkali-atoms. For the latter, the energy of the

10
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l rc a1 a2 a3 a4

133Cs, αc = 15.6440

0 1.92046930 3.49546309 1.47533800 -9.72143084 0.02629242

1 2.13383095 4.69366096 1.71398344 -24.65624280 -0.09543125

2 0.93007296 4.32466196 1.61365288 -6.70128850 -0.74095193

≥ 3 1.99969677 3.01048361 1.40000001 -3.20036138 0.00034538
85Rb, αc = 9.0760

0 1.66242117 3.69628474 1.64915255 -9.86069196 0.19579987

1 1.50195124 4.44088978 1.92828831 -16.79597770 -0.81633314

2 4.86851938 3.78717363 1.57027864 -11.65588970 0.52942835

≥ 3 4.79831327 2.39848933 1.76810544 -12.07106780 0.77256589

Table 2.2: Core potential parameters ai, critical penetration radius rc and core polarizability αc for
Cesium and Rubidium. Parameters taken from Ref. [40].

valence electron is given by

En,l = − hcR∞
(n− δn,l)2

, (2.18)

where hcR∞ = 1/2 is the Rydberg constant in atomic units. As the valence electron is further away
from the core, it feels a positive net charge. However, as the electron gets closer, this is not true
anymore and the core can be polarized for states with low angular momentum. This phenomenon
can be encoded into an effective principal quantum number n∗ = n − δn,l, where δn,l is called
the quantum defect and has a greater value for lower orbital angular momentum. For l ≥ 3 the
quantum defects are effectively zero, coresponding to a pure Coulombic potential.

The effect of the single-electron spin-orbit potential Vso(r) = (α/r2)l · s is negligible on the calcu-
lations of the radial wavefunctions (α ≈ 1/137). Therefore, it is possible to effectively include the
spin-orbit interaction by replacing δn,l with δn,l,j using the extended Rydberg-Ritz formula,

δn,l,j = a+
b

(n− a)2
+

c

(n− a)4
+

d

(n− a)6
+

e

(n− a)8
+ . . . . (2.19)

The Rydberg-Ritz coefficients a-e are taken from experimental data. Table 2.3 shows the Rydberg-
Ritz coefficients for 133Cs and 85Rb.

Figure 2.2 shows the transition energy gaps between atomic states with different angular momen-
tum quantum numbers as a function of n. The smallest energy gap for Rubidium and Cesium
is found for the transition n2D3/2 → n2D5/2 which range between 1000 to 1 MHz for n = 20 to
n = 200, respectively. For the transition n2P1/2 → (n+ 1)2S1/2 the energy gap is of the order of 10

GHz for n ∼ 71 in Rb atoms and n ∼ 73 for Cs.

Tables 2.4 and 2.5 show the transition energies between different Rydberg states computed using
the quantum defects from Table 2.3 for 133Cs and 85Rb, respectively. Our computed energies have
an error smaller than 0.1% compared with available experimental data [41, 42].
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lj a b c d nmin
133Cs

S1/2 4.049352(38) 0.238(7) 0.24044 0.12177 6

P1/2 3.5916(5) 0.36(1) 0.34284 1.23986 6

P3/2 3.5590(7) 0.38(1) 0.28013 1.57631 6

D3/2 2.475454(20) 0.010(4) -0.43324 -0.96555 5

D5/2 2.466308(30) 0.015(6) -0.43674 -0.74442 5

F5/2 0.033587 -0.213732 0.70025 -3.66216 4
85Rb

S1/2 3.1311804(10) 0.1784(6) -1.8 − 14

P1/2 2.6548849(10) 0.2900(6) -7.9040 116.4373 11

P3/2 2.6416737(10) 0.2950(7) -0.97495 14.6001 13

D3/2 1.34809171(40) -0.60286(26) -1.50517 -2.4206 4

D5/2 1.34646572(30) -0.59600(18) -1.50517 -2.4206 4

Fj 0.016312 -0.064007 -0.36005 3.2390 4

Table 2.3: Rydberg-Ritz coefficients for 85Rb and 133Cs. The last column nmin is the minimum
value of n for which the expansion is estimated to be valid. Data taken from Ref. [27].

n2lj → n′2l′j′ Ref. [41] This work

452P3/2 → 492S1/2 287476.992 287464.770

592P3/2 → 682S1/2 265898.688 265894.066

672P3/2 → 812S1/2 261818.142 261815.154

722P3/2 → 902S1/2 257008.756 257006.406

592P3/2 → 662D5/2 255306.920 255067.697

Table 2.4: Transition energy in MHz between selected Rydberg states of 133Cs compared with
experimental data taken from Ref. [41].

n2S1/2 → n2P1/2 n2S1/2 → n2P3/2

n Ref. [42] This work Ref. [42] This work

27 223664.264 223671.632 − −
28 197990.586 197996.151 203322.762 203321.703

29 176100.586 176104.837 180848.640 180847.820

30 157322.108 157325.423 161568.406 161567.725

31 141121.445 141124.021 144934.120 144933.648

32 127070.956 127072.994 130507.152 130506.799

33 114825.466 114827.083 117933.187 117932.887

34 104104.194 104105.474 − −

Table 2.5: Transition energy in MHz between selected Rydberg states of 85Rb compared with
experimental data taken from Ref. [42].
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Figure 2.2: Transition energy ∆Enlj between atomic states n2D3/2 → n2D5/2, n2S1/2 → (n +
1)2P3/2 and n2P1/2 → (n + 1)2S1/2 as a function of the principal quantum number n, for (a)133Cs
and (b)85Rb. Logarithmic scale (base 10) is used for ∆Enlj .

2.1.5 Radial wavefunction

In order to compute the radial wavefunction of a Rydberg atom, we come back to eq. (2.13) and
define the scaled radial function U(r) = r R(r) to remove the first derivative, obtaining

d2U(r)

dr2
+

(
2µ [En,l,j − Vl(r)]−

l(l + 1)

r2

)
U(r) = 0. (2.20)

The radial wavefunction U(r) has stronger oscilations as the radial coordinate r decreases. These
oscillations lead to accumulation of errors at small radii. To smoothen these oscilations, the radial
Schrödinger eq. (2.20) can be rescaled by defining the function χ(r) = r−1/4U(r) and the radial
coordinate as u =

√
r [43]. Thus eq. (2.20) becomes

d2χ

du2
+

(
8µu2 [En,l,j − Vl(u)]− 4l(l + 1) + 3/4

u2

)
χ = 0. (2.21)
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n Ref. [45] This work

6 15.7 15.7

10 82.0 82.3

20 458 459

22 589 570

25 758 759

30 1133 1135

35 1584 1585

40 2110 2111

45 2710 2711.5

50 3386 3387

55 4136 4138

60 4961 4963

Table 2.6: Mean radius 〈r〉 in atomic units (a0) for Cesium Rydberg atom in a nD state . The
values computed numerically in this work (third column) are compared with the results obtained in
Ref. [45] using the scaling formula 〈r〉 = [3(n− δnl)2 − l(l + 1)]/2.

n Ref. [46] This work

15 274(75) 254

20 520(150) 474

25 800(300) 762

30 1200(400) 1118

35 1800(650) 1542

37 1800(800) 1730

40 2100(850) 2033

45 2700(1900) 2593

50 3500(1900) 3220

55 3800(2300) 3914

Table 2.7: Radial integral 〈n2lj |r|n′2l′j′〉 of the atomic transition n2D → (n+1)2P for Rubidium taken
from Ref. [46] compared with the values computed in this work using j = 3/2. The parenthesis
shown in the second column correspond to the experimental error band.
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Figure 2.3: Radial probability density function (first column) and radial function (second column)
for (a), (b) Cesium and (c), (d) Rubidium atoms in a Rydberg state using the Numerov algorithm
[44].

Inserting the core potential in terms of the variable u, eq. (2.21) then reads

d2χ(u)

du2
+

[
8µZn,l(u

2) +
4µαc
u6

(
1− e−(u2/u2

c)6
)

− 4µu2

(n− δn,l)2
− 4l(l + 1) + 3/4

u2

]
χ(u) = 0. (2.22)

Eq. (2.22) is an ordinary differential equation of second-order, which has the form χ′′(y) +

g(y)χ(y) = 0 and can be solved using the Numerov algorithm [44] (see Appendix A). In this
algorithm, the continuous solution y(x) is transformed into a discrete solution yi (evaluated at the
i-th step) for integration purposes, and the numerical implementation requires to know a priori the
values of the function y0 and y1 or the values yN and yN−1, if N is the number of integration steps.

Due to the core potential for alkali-atoms (2.16), the rescaled wavefunction χ(u) instead of expo-
nentially decay to zero for small values of u, it diverges in this classically forbidden range [27].
Therefore, the range of integration must be truncated, for Rydberg alkali-atoms, the inner radius
is set to be ra = α

1/3
c , while the outer integration radius is set as rb = 2n(n + 15), which is larger

than classical turning point of the wavefunction. In order to minimize the errors at small values u,
the integration is performed inwards and we assume that the wavefunction tends to zero at rb. The
error introduced by the range truncation for Rydberg state is only 0.01% [27], setting the radial step
of integration as h, then N = rb−ra

h and the integration error using the Numerov method scales as
O(h6).

Up to this point, the Numerov algorithm gives us a radial wavefunction that must be normalized
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using a normalization constant Nn,l, which is found by evaluating the integral

Nn,l =

∫ rb

ra

|R′(r)|2r2dr, (2.23)

using cubic interpolation [47]. The normalized wavefunction Rn,l(r) = R′(r)/
√
Nnl allows us

to compute matrix elements of the electric multipole operator (see Section 2.1.6) and thus, it is
possible to calculate numerically some important properties of Rydberg atoms (see Section 2.2).
In order to illustrate the results of the numerical integration, in Tables 2.6 and 2.7, we present the
mean radius 〈r〉 for 133Cs Rydberg atom in a nD state and the radial integrals 〈n2lj |r|n′2l′j′〉 for
selected atomic transitions of 85Rb, respectively. Our numerical results compare very well with
available experimental data [45, 46], within the experimental error band.

Fig. 2.3 shows the radial probability density function |Rn,l|2r2 and the normalized radial function
Rn,l(r) for selected Rydberg states of Rubidium and Cesium atoms, in which the Numerov algo-
rithm has been used. The radial density is shifted towards larger radius as the principal quantum
number increases, illustrating the large orbital radii of the Rydberg states. The radial function plots
still have oscillations near to the core that are flattened as r increases.

2.1.6 Electric multipoles in the fine structure basis

In order to compute the exotic properties of Rydberg atoms, we need to evaluate the matrix ele-
ments of the electric multipole using a fine structure basis. The angular part of the matrix elements
can be easily calculated using angular momentum algebra, and the radial part can be calculated
using the radial wavefunctions obtained following the procedure in Section 2.1.5.

Let us consider the coupled basis {|n(ls)jm〉} for an atomic state. The matrix elements Iato(k, q)
of a spherical tensor operator Q̂qk [48], giving the dipole moment operator for k = 1 and the
quadrupole moment operator for k = 2, are given by the expression,

Iato(k, q) = 〈n′(l′s′)j′m′| Q̂qk |n(ls)jm〉 . (2.24)

Eq. (2.24) is an atomic integral that can be rewritten using angular momentum algebra and the
pure radial wavefuntions showed in the previous section. The spherical tensor operator acts on
the electronic coordinates, therefore it does on the orbital angular momentum states which need
to be decoupled. From the Wigner-Eckart theorem [48] we have

Iato(k, q) = (−1)j
′−m′

 j′ k j

−m′ q m

 〈n′(l′s′)j′| |Q̂k| |n(ls)j〉 . (2.25)

where the circular brakets are the 3j-symbols and 〈n′(l′s′)j′| |Q̂k| |n(ls)j〉 is the reduced matrix
element [48]. Using angular momentum algebra the reduced matrix element can be decoupled as
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[48]

〈n′(l′s′)j′| |Q̂k| |n(ls)j〉 = δs′s(−1)j+l
′+s′+k[j′]1/2[j]1/2

 l′ j′ s

j l k

 〈n′l′| |Q̂k| |nl〉 , (2.26)

where [j] ≡ 2j+1. The curly brakets is a 6j-symbol [48] and the integral 〈n′l′| |Q̂k| |nl〉 is the orbital
reduced matrix element. These matrix elements can be evaluated using the angular momentum
wavefunctions Y ml and the Wigner-Eckart theorem, which are given by

〈n′l′| |Q̂k| |nl〉 = (−1)l
′
[l′]1/2[l]1/2

 l′ k l

0 0 0

 〈n′l′| Q̂k |nl〉 . (2.27)

The radial atomic integrals 〈n′l′| Q̂k |nl〉 can be computed by solving the electronic structure ac-
cording to the previous section and represent the overlap of the wavefunctions and the tensor
operator,

〈n′l′| Q̂k |nl〉 =

∫ rf

ri

Rn′l′(r)Q̂k(r)Rnl(r)r
2dr. (2.28)

Finally, using eqs. (2.27), (2.26) and (2.25), we obtain the final expression

Iato(k, q) = δs′s(−1)j
′+j−m+s+k[l′]1/2[l]1/2[j′]1/2[j]1/2

 l′ k l

0 0 0


×

 j′ k j

−m′ q m

 l′ j′ s

j l k

 〈n′l′| Q̂k |nl〉 . (2.29)

2.2 Atomic polarizability function

In this section, we discuss the dynamical polarizability function of Rydberg atoms using the re-
sults from previus sections. This function is relevant to study the long-range interaction between
Rydberg atoms and molecules in the next chapters.

We start by considering the general expression of the qq-component of the dynamical polarizability
function shown in Appendix B (eq. (B.23), for an atomic state k = |n(ls)jm〉,

αnljmqq′ (ω) = 2(−1)q
∑
n′

∑
l′s′

∑
j′m′

(En′l′j′ − Enlj)
(En′l′j′ − Enlj)2 − ω2

〈n(ls)jm|Q̂q1|n′(l′s′)j′m′〉 〈n′(l′s′)j′m′|Q̂
−q′
1 |n(ls)jm〉 , (2.30)

where Q̂q1 is the dipole moment operator. Expression (2.30) can be further developed for angular
momentum states. Since the dipole operator (Q̂q1) acts over the electronic angular momentum
state |lml〉, the matrix elements 〈nljm|Q̂−q1 |n′(l′)j′m′〉 can be rewritten using eq. (2.29). From the
symmetry properties of 3j-symbols [48], the only non-zero components of the polarizability are
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Figure 2.5: Atomic static polarizability components αqq(ω = 0) calculated for n2D3/2, m = 1/2
Rydberg states of 133Cs and 85Rb atoms.

those for which q = q′, thus αnljmqq is given by

αnljmqq (ω) = δss′
∑

n′l′j′m′

(−1)2j′+2j−m′−m+q+1

[
2(En′l′j′ − Enlj)

(En′l′j′ − Enlj)2 − ω2
[j][l][j′][l′]

×

 l′ 1 l

0 0 0

2 l j s

j′ l′ 1


2 j′ 1 j

−m′ −q m

2

| 〈n′l′| er |nl〉 |2
]
.(2.31)

We use eq. (2.31) to compute the non-zero components of the polarizability for Rydberg atomic
states (n ≥ 15) and include all intermediate states in the summation (2.31) to ensure its conver-
gence, that is n′ = n± 10, giving a relative change δα/α smaller than a fixed tolerance ε = 0.01.

Figure 2.4 shows the atomic dynamical polarizability components αnljmqq evaluated at imaginary
frequency for 133Cs and 85Rb in a 402P3/2, m = 1/2 Rydberg state. The polarizability function
tends quickly to zero. Figure 2.5 shows how the static values of the polarizability increases in
magnitude as a functions of the principal quantum number n for 133Cs and 85Rb in a n2D3/2, m =

1/2.
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n αsca(theo) αsca(exp) %error |error| αten(theo) αten(exp) %error |error| αnljm00 (theo)

15 8.42[7] 8.60[7] 2.34 0.20[7] 3.72[7] 3.54[7] 5.23 0.19[7] 4.70[7]

20 6.25[8] 6.43[8] 2.50 0.16[8] 3.62[8] 3.58[8] 1.35 0.05[8] 2.63[8]

25 2.76[9] 2.97[9] 7.00 0.19[9] 2.08[9] 2.01[9] 3.40 0.07[9] 0.68[9]

30 1.05[10] 1.05[10] 0.40 0.042[9] 7, 80[9] 7.84[9] 0.51 0.04[9] 2.70[9]

35 2.69[10] 2.97[10] 5.40 0.15[10] 2.57[10] 2.49[10] 3.39 0.087[10] 0.12[10]

40 7.45[10] 7.43[10] 0.27 0.02[10] 6.61[10] 6.43[10] 3.13 0.20[10] 0.84[10]

45 1.60[11] 1.69[11] 4.80 0.077[11] 1.59[11] 1.57[11] 1.03 0.01[11] 0.01[11]

50 3.43[11] 3.42[11] 0.50 0.017[11] 3.35[11] 3.30[11] 1.83 0.06[11] 0.08[11]

55 5.95[11] 6.59[11] 9.80 0.58[11] 6.99[11] 6.55[11] 6.75 0.47[11] -1.04[11]

Table 2.8: Scalar and tensor static polarizabilities for 85Rb in n2D3/2 state calculated theoretically
in this work (theo) and compared with the experimental data available [46] (exp). The %error and
the corresponding absolut value of error for each polarizability component are also shown. The
last column shows the 00-component of the polarizability αnljm00 = αsca - αteo for j = 3/2, m = 1/2.
The square parenthesis A[x] in the fifth column means A× 10x.

Error estimation

Figure 2.6 and 2.7 show the 00-component of the static polarizability as a function of the princi-
pal quantum number n in different angular momentum states |n2lj〉 compared with the available
experimental data for 133Cs and 85Rb. Most of the results obtained are in good agreement with
the data, except for Rubidium in D3/2, m = 1/2 state. Due to the non-monotonic behavior of this
polarizability in the range of n between 30 and 60 (see Fig. 2.7(c)), we consider it as a separate
case.

The 00-component of the atomic polarizability (2.31) can also be written in tensorial form, which
allows to define a scalar and tensor polarizability as follows [50]

αnljm00 = αsca(j) + αten(j)
3m2 − j(j + 1)

j(2j − 1)
. (2.32)

For the state n2D3/2, m = 1/2, we compute and compare the scalar (αsca) and tensor (αten)
static polarizabilities using the sum-over-states expressions given in eq. (2.32). The results are
shown in Table 2.8. The 00-component of the polarizability in terms of αsca and αten is given by
αnljm00 = αsca − αten for j = 3/2 and m = 1/2. For n = 35, 45, we found that the static polarizability
αnljm00 (see last column of Table 2.8) is smaller than the error values of its corresponding scalar
and tensor components. For states with n = 25, 40, 50 the total polarizability is of the order of the
error. We conclude that in the region 30 < n < 60, the error band does not allow us to estimate a
reliable polarizability for Rubidium 2D3/2, m = 1/2 states.

For the rest of the atomic states of Rubidium and for all the atomic states of Cesium the estimated
errors for the qq-components of the polarizabilities are less than 1% compared with the available
experimental data.
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Figure 2.6: 00-component of the atomic static polarizability α00(ω = 0) computed for several Ryd-
berg states of 133Cs and compared with the avalaible data. This work∗, [49]†.
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Figure 2.7: 00-component of the atomic static polarizability α00(ω = 0) computed for several
Rydberg states of 85Rb and compared with the avalaible data. This work∗, [46]§, [51]‡. For
2D3/2 m = 1/2 state, there are visible dicrepancies between all references, this is explained using
eq. (2.32) and Table 2.8.
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Chapter 3

Heteronuclear Diatomic Molecules

The complete mechanical description of the simplest diatomic molecule is difficult to achieve, even
classically. In 1927, Born and Oppenheimer [52] established a good approximation to describe an
isolated molecule, in which the molecule is characterized by its several types of motion, namely,
translational, rotational, vibrational and electronic. This approximation relies on by the difference
between the masses of the electrons and the nuclei that form the molecule. The electron massm is
about four orders of magnitude smaller than the mass of the nucleus M . Therefore, electrons can
move much faster than nuclei. Born and Oppenheimer proposed the separation of the electronic
and nuclear motion in the molecule by setting the parameter

κ =
(m
M

)1/4

∼ 1

10
, (3.1)

and showed that
∆Enuc
∆Eele

≈ κ2,
∆Erot
∆Evib

≈ κ2, (3.2)

where ∆Enuc, ∆Eele, ∆Erot and ∆Evib are the separation between nuclear, electronic, rota-
tional and vibrational energy levels, respectively. This energy classification is well-known as the
Born–Oppenheimer separation and is very appropriate for molecules in closed shell ground states.

This Chapter discusses the fundamentals of closed shell diatomic molecules using the Born–Oppenheimer
approximation. In order to find the molecular wavefuntion, the Born adiabatic approximation and
the rigid rotor model are also used. The molecular eigenstates and eigenvalues are used to
compute the molecular dynamical polarizability, which will be needed to study the long-range in-
teraction between Rydberg atoms and ground state molecules.
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3.1 Molecular Hamiltonian and wavefunctions

The internal kinetic energy of a diatomic molecule can be written in terms of kinetic energy operator
of the eletrons and nuclei in the laboratory frame as [53] (atomic units),

T = −
2∑

β=1

∇2
β

2Mβ
−

Ne∑
i=1

∇2
i

2
, (3.3)

where β and i are sums over the nuclei of masses Mβ and the Ne electrons, respectively. We can
transform the kinetic energy expression (3.3) in the space-fixed frame to the center of mass of the
nuclei, located at

RN =

∑
βMβRβ

M1 +M2
. (3.4)

Using the internuclear vector R = R2 −R1, the kinetic energy defined in a system frame where
the origin is at center of the nuclei is given by [53],

T = − ∇
2
N

2MN
− ∇2

R

2µmol
−
∑
i

∇′2i
2
−
∑
ij

∇′i∇′j
2MN

, (3.5)

where MN = M1 +M2 is the total mass of the nuclei and their reduced mass is defined as µmol =

M1M2/MN . The operator∇′i acts over the relative coordinate Ri−RN . The first term on the right-
hand side of eq. (3.5) represents the kinetic energy due to the translational motion of the molecule,
which can be ignored in the absence of spacially inhomogeneous external fields. The second term
is the kinetic energy of the nuclei, which describes the vibrational and rotational motion. The term
−
∑
i
∇′2i
2 is the kinetic energy of the electrons. The last term −

∑
ij

∇′i∇
′
j

2MN
is commonly known as

the mass polarisation term and accounts for the small fluctuations of the position of the center of
mass of the nuclei due to the movement of the electrons within the molecule.

The non-relativistic molecular Hamiltonian Hmol of a diatomic molecule in free space can thus be
separated into electronic and nuclear contributions

Hele = −1

2

∑
i

∇2
i −

1

2MN

∑
i,j

∇i · ∇j +
∑
i6=j

1

Rij
−
∑
i,β

Zβ
Riβ

, (3.6)

Hnuc = − 1

2µmol
∇2
R +

Z1Z2

R
. (3.7)

These Hamiltonians contain the kinetic energy terms from eq. (3.5) and the potential energy
correponding to the interaction between the particles. Zβ is the atomic charge of the nucleus and
Ra,b is the relative distance between the particle a = i, j(electrons) and b = j(electron), β(nucleus).

The Schrödinger equation of a diatomic molecule in a field-free space can be written in the
molecule-fixed frame as,

(Hele +Hnuc)Ψrve = ErveΨrve, (3.8)

where Ψrve = Ψrve(ri, R, θ, ϕ) is the total molecular wavefunction which depends on the electronic
coordinates ri and the nuclear spherical coordinates (R, θ, ϕ). Since the electron mass is approxi-
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mately 1800 times smaller than the nuclear mass, the ratio me/µmol is very small, and the nuclear
Hamiltonian − 1

2µmol
∇2
R is a perturbing operator compared with the electronic Hamiltonian [54].

Therefore, The zero-th order wavefunctions are written as the product of electronic and nuclear
states as Ψ

(0)
rve = Ψ

(0)
e Ψ

(0)
rv . This is known as the Born–Oppenheimer approximation.

The molecular wavefunction Ψrve can be expanded as complete set of orthonormal electronic Ψn
e

and nuclear Ψn
rv functions as

Ψrve =
∑
n

anΨn
e (ri, R)Ψn

rv(R, θ, ϕ). (3.9)

The eigensystem for the electronic Hamiltonian is written as

HeleΨn
e (ri, R) = Ene Ψn

e (ri, R) (3.10)

where
∫
dr3
i [Ψ ∗n

′

e Ψn
e ] = δnn′ . Each fixed distance R determines different configurations of the

electronic coordinates ri to solve eq. (3.10), making the electronic equation to depend parametri-
cally depend on the internuclear distance.

Replacing eq. (3.9) into (3.8), multiplying from the left by Ψ∗n
′

e and integrating over the electronic
coordinates, we obtain

an (Ene + Vnuc − Erve) Ψn
rv +

∑
n

anCn′nΨn
rv = 0, (3.11)

where Vnuc = Z1Z2

R and Cn′nΨn
rv =

∫
Ψ∗n

′

e

(
− 1

2µmol
∇2
R

)
Ψn
e driΨ

n
rv are the non-adiabatic coupling

functions. The nuclei are assumed to be fixed in space, and electrons follow the nuclear motion adi-
abatically, i.e. the electronic state is changing very slowly according to the nuclear displacements,
i.e. Cnn′Ψn

rv ≈
(
− 1

2µmol
∇2
R

)
δnn′Ψ

n
rv, and the nuclear Schrödinger equation (3.11) becomes

[
− 1

2µmol
∇2
R + Vnuc + Ene

]
Ψn
rv(R, θ, ϕ) = Erve[Ψn

rv(R, θ, ϕ)]. (3.12)

Following the procedure in Chapter 2, Section 2.1.1 we can write the operator ∇2
R as,

∇2
R =

1

R2

∂

∂R

(
R2 ∂

∂R

)
+

csc θ

R2

∂

∂θ

(
sin θ

∂

∂θ

)
+

csc2 θ

R2

(
∂2

∂ϕ2

)
(3.13)

The first term is related to the vibrational motion of the nuclei and the rest is of the expression
related to the rotational motion. By introducing the angular momentum operator J of the molecular
system as

J2 = csc θ
∂

∂θ

(
sin θ

∂

∂θ

)
+ csc2 θ

∂2

∂ϕ2
, (3.14)

we can simplify expression for the operator (3.13) to read

∇2
R =

1

R2

∂

∂R

(
R2 ∂

∂R

)
+

J2

R2
. (3.15)

The nuclear wavefunction can be solved by separating the radial and the angular dependence
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Figure 3.1: Lowest ten electronic potentials of the 23Na6Li molecule. The energy U(r) is in atomic
units (a.u.) and R in units of Bohr radius a0. Potentials are taken from Ref. [55].

(vibrations and rotations) as

φnrv(R, θ, ϕ) =
S(R)

R
YMJ (θ, ϕ), (3.16)

where YMJ (θ, ϕ) are spherical harmonics with M being the component of total angular momentum
J along the space-fixed z-axis. The spherical harmonic functions obey the relation

J2YMJ = J(J + 1)YMJ , (3.17)

and they correspond to angular momentum states of the system, i.e.

|JM〉 = YMJ (θ, ϕ). (3.18)

Applying the angular momentum state relation (3.17) into eq. (3.12), we obtain a radial nuclear
equation of the form[

− 1

2µmol

(
d2

dR2

)
+
J(J + 1)

2µmolR2
+ V (R)

]
S(R) = ErveS(R). (3.19)

The second term is the rotational energy that acts as a centrifugal barrier to the vibrational motion.
The effective nuclear potential is V (R) = Vnuc(R) + Ene (R).

The radial wavefuntion describes the vibration of the nuclei about a given position (R) and the
angular wavefunction describes the rotation of the molecule about its center of mass. In general,
even when this separation of varibles has been done, these two types of motions are coupled [53].

To solve eq. (3.19), it is necessary to know V (R), which is found by solving the electronic
Schrödinger equation (3.10) for several internuclear distances, giving potential curves for V (R)

like those shown in Figure 3.1 for 23Na6Li molecules.
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Internuclear distance ( r )

V ( r )

E

Harmonic

Figure 3.2: Molecular electronic potential displaying several vibrational levels and comparison with
the harmonic approximation around the equilibrium position Re.

Figure 3.2 shows a typical electronic potential curve. For R → 0 the potential represents a strong
repulsive barrier between the nuclei. As R increases, the potential energy reaches its minimum
value at equilibrium position Re. From this point the potential increases with R, tending to an
asymptotic value at R→∞, where molecules eventually dissociate.

Back to the radial equation (3.19), V (R) can be expressed as a Taylor series around the equilibrium
position (Re) obtaining

V (R) =
ke
2

(R−Re)2
, ke =

d2V (Re)

dR2
. (3.20)

This is an harmonic potential model and it works for low rotational levels (near the equilibrium
position Re). Replacing (3.20) into (3.19) and taking R = Re for the rotational energy, the radial
eq. (3.19) becomes[

− 1

2µmol

(
d2

dR2

)
+
J(J + 1)

2µmolR2
e

+
ke
2

(R−Re)2

]
S(R) = ErveS(R). (3.21)

Setting R = Re to obtain eq. (3.21) is known as the rigid rotor approximation, which states
that while the molecule rotates the internuclear distance does not change. The mathematical
justification is supported by a Taylor series of a rotational term about Re.

Finally, with q = R−Re and the rotational term J(J+1)
2µmolR2

e
= Erot, eq. (3.21) is rewritten as

[
− 1

2µmol

(
d2

dq2

)
+
ke
2
q2

]
S(q) = (Erve − Erot)S(R). (3.22)
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The energy levels for this harmonic oscillator are given by1,

Evib =

(
v +

1

2

)
hνe, νe =

1

2π

(
ke
µmol

) 1
2

, v = 0, 1, 2, 3, ... (3.23)

The rovibrational energies of diatomic molecules in the rigid rotor approximation are thus given by

EvJ =

(
v +

1

2

)
hve + J(J + 1)Be. (3.24)

Where Be = 1
2µmolRe

(in atomic units) is the rotational constant, which ranges between 1-20 GHz
for alkali-heteronuclear diatomic molecules [57].

The rigid rotor and harmonic oscillator models are approximations valid for low excited energy
levels (vibrational and rotational). For higher excited levels, it is required to take more terms in the
Taylor series for the potential V (q), in a general form [53]

V (q) = a0q
2(1 + a1q + a2q

2 + a3q
3 + ...), (3.25)

where a0 = hw2
e/4Be and ai with i = 1, 2, 3... are constants. Equation (3.25) represents the

anharmonic deviations of the harmonic model (3.20). The rotational term can also be expanded
as a power series in q as (Planck constant h = 1)

Hrot =
1

2µmolRe
J(J + 1)[1 + c1q + c2q

2 + c3q
3 + ...], (3.26)

where ci with i = 1, 2, 3... are constants. Eqs. (3.25) and (3.26) can be treated using ordinary
non-degenerate perturbation theory [53], giving a total rovibrational energy of the form

E(v,J) =
∑
kl

Ykl(v + 1/2)kJ l(J + 1)l. (3.27)

The coefficients Ykl are explicitly given by Dunham [58]. Eq. (3.27) is well-known as the Dunham
expansion.

In general, the vibrational energy is about three orders of magnitude greater than the rotational
energy ve > Be. This is due to the dependence with the reduced mass; ve ∝ µ

− 1
2

mol, while Be ∝
µ−1
mol. Therefore, a mainfold of rotational energy levels are associated to one particular vibrational

state [59]. There is another relevant energy scale, corresponding to the changes in the electronic
levels. This energy scale is at least two orders of magnitude greater than the vibrational energy
[59].

So far we have not considered the interaction Hamiltonian of the electronic angular momentum
and the electronic spin H(L,S), which is related to smaller energy scales in the molecular struc-
ture. Considering this interaction Hamiltonian, the general form of the angular momentum states

1Using the harmonic oscillator model it is found that Sv(q) =
(
α
Π

)1/4 Hv(α1/2q) exp −αq2/2
(2vv!)1/2

[56]. Hv are the Hermite

polynomials, α = µmolωe
~ and ωe = 2πve.
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becomes [53]

|JΩM〉 =

[
2J + 1

4π

]1/2

D(J)
MΩ(θ, ϕ, χ), (3.28)

and the rotational energy is given by,

Erot =
1

2µmolR2

[
J(J + 1)− Ω2

]
(3.29)

where Ω = Λ + Σ, which are the eigenvalues of the operators Lz and Sz, respectively, and D(J)
MΩ is

an element of the Wigner rotation matrix [48] specified by the Euler angles (θ, ϕ, χ) [48].

Since we work with closed-shell molecules in the X1Σ+ state, all the electronic angular momenta
are zero (L = S = 0), therefore Ω = 0 and eq. (3.28) becomes

|J0M〉 =

[
2J + 1

4π

]1/2

D(J)
M0(θ, ϕ) = YMJ , (3.30)

as given in eq. (3.16).

Finally, the state for an isolated diatomic molecule under the Born–Oppenheimer approximation
and the rigid rotor model can be written as

Ψrve ≡ |γ〉 |vJ〉 |JΩM〉 , (3.31)

where |γ〉 denotes de electronic state, |vJ〉 is the rovibrational state and |JΩM〉 is angular mo-
mentum state. For molecules in the electronic and rovibrational ground state, in which we are
interested, the system state is given by |X1Σ+〉 |v = 0, J = 0〉 |J = 0,Ω = 0,M = 0〉.

3.2 Molecular polarizability function

In this section, we study the frequency-dependent polarizability of ground state molecules (X1Σ+, v =

0, J = 0) and compute this function for KRb, LiCs, LiRb and RbCs molecules. We focus on the
low-frequency regime, in which these molecules interact at long-range distances with Rydberg
alkali-atoms.

In the space-fixed frame, the dynamical dipole polarizability components (see Appendix B) for a
molecular state |γvJΩM〉 with energy EγvJ can be written as

αγvJΩM
qq′ (ω) =

∑
γ′v′

∑
J′Ω′M ′

[
2(−1)q(Eγ′v′J′ − EγvJ)

(Eγ′v′J′ − EγvJ)2 − ω2
×

〈γvJΩM |Q̂q1|γ′v′J ′Ω′M ′〉 〈γ′v′J ′Ω′M ′|Q̂
−q′
1 |γvJΩM〉

]
. (3.32)

Where Q̂q1 is a multipole moment, a spherical tensor operator of rank 1 and component q. To
evaluate the molecular dipole integrals 〈γvJΩM |Q̂q1|γ′v′J ′Ω′M ′〉 in the space-fixed frame, the q-
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component of the dipole operator must be written in terms of the molecule-fixed p-components
through the unitary transformation Q̂q1 =

∑
pD
∗(1)
qp Q̂p1. Transforming to the molecule-fixed frame is

convenient since the electronic and nuclear eigenfunctions are usually computed in the molecule-
fixed frame. The matrix elements of the spherical tensor operator are given by,

〈γvJΩM |Q̂q1|γ′v′J ′Ω′M ′〉 =
∑
p

〈JΩM |D∗(1)
qp |J ′Ω′M ′〉 〈γv|Q̂

p
1|γ′v′〉 . (3.33)

The matrix elements 〈JΩM |D∗(1)
qp |J ′Ω′M ′〉 can be evaluated using the expression for the angular

integral of the Wigner rotation matrix [48]

∫
DJ3M ′3M3

(K)DJ2M ′2M2
(K)DJ1M ′1M1

(K)dK = 8π2

 J1 J2 J3

M ′1 M ′2 M ′3

 J1 J2 J3

M1 M2 M3

 , (3.34)

where dK = dϕ sin θdθdχ is the solid angle element and the circular brakets are the 3j-symbols
[48]. Therefore, the matrix element 〈JΩM |D∗(1)

qp |J ′Ω′M ′〉 can be written as

〈JΩM |D∗(1)
qp |J ′Ω′M ′〉 = (−1)M−Ω

√
(2J + 1)(2J ′ + 1)

 J ′ 1 J

−M ′ −q M

 J ′ 1 J

−Ω′ −p Ω

 ,

(3.35)
and eq. (3.32) becomes

αγvJΩM
qq′ (ω) =

∑
γ′,v′

∑
J′Ω′M ′

2(−1)M+M ′−Ω−Ω′ Eγ′v′J′ − EγvJ
(Eγ′v′J′ − EγvJ)2 − (ω)2

×[J ][J ′]

 J ′ 1 J

−M ′ −q M

 J ′ 1 J

−M ′ q′ M


×
∑
pp′

 J ′ 1 J

−Ω′ −p Ω

 J 1 J ′

−Ω −p′ Ω′

 〈γv|Q̂p1|γ′v′〉 〈γ′v′|Q̂p′1 |γv〉 , (3.36)

where [J ] ≡ 2J+1. According to the symmetry properties of the 3j-symbols [48], the non-vanishing
terms in eq. (3.36) are those with q′ = q and −p = p′. Expression (3.36) can then be rewritten as

αγvJΩM
qq (ω) =

∑
γ′,v′

∑
J′Ω′M ′

2(−1)M+M ′−Ω−Ω′ [J ][J ′]
Eγ′v′J′ − EγvJ

(Eγ′v′J′ − EγvJ)2 − (ω)2

∑
p

 J ′ 1 J

−M ′ −q M

2 J ′ 1 J

−Ω′ −p Ω

2

| 〈γv|Q̂p1|γ′v′〉 |2. (3.37)

Eq. (3.37) can be separated into diagonal and non-diagonal terms with respect to γ as follows

αγvJΩM
qq (ω) = αrvqq(ω) + αeleqq (ω), (3.38)
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where

αrvqq(ω) =
∑
v′

∑
J′Ω′M ′

2(−1)M+M ′−2Ω[J ][J ′]
Eγv′J′ − EγvJ

(Eγv′J′ − EγvJ)2 − (ω)2

∑
p

 J ′ 1 J

−M ′ −q M

2 J ′ 1 J

−Ω −p Ω

2

| 〈γv|Q̂p1|γv′〉 |2, (3.39)

and

αeleqq (ω) =
∑
γ′( 6=γ)

∑
v′

∑
J′Ω′M ′

2(−1)M+M ′−Ω−Ω′ [J ][J ′]
Eγ′v′J′ − EγvJ

(Eγ′v′J′ − EγvJ)2 − (ω)2

∑
p

 J ′ 1 J

−M ′ −q M

2 J ′ 1 J

−Ω′ −p Ω

2

| 〈γv|Q̂p1|γ′v′〉 |2. (3.40)

Eq. (3.39) is known as the rovibrational polarizability and corresponds to sum over the molecular
states inside the same electronic curve, i.e. γ′ = γ. Due to the symmetry properties of the
3j-symbols, p = 0 thus ∆Ω = 0. αrvqq(ω) becomes

αrvqq(ω) =
∑

v′J′M ′

(2J + 1)(2J ′ + 1)
2(Ev′J′ − EvJ)

(Ev′J′ − EvJ)2 − ω2 J ′ 1 J

−Ω 0 Ω

2 J ′ 1 J

−M ′ −q M

2

| 〈vJ | Q̂0
1 |v′J ′〉 |2, (3.41)

where the electronic index γ has been omitted for simplicity.

Eq. (3.40) accounts for the sum over different electronic states, i.e. γ′ 6= γ, and it is denoted as
the electronic polarizability. This contribution αeleqq (ω) can be separated into two terms, p = 0 and
p = ±1. For a molecule in the electronic ground state X1Σ+, these can written as follow

α00(ω) = α‖(ω) =
∑
Σ′v′

2(EΣ′v′J′ − EΣvJ)

(EΣ′v′J′ − EΣvJ)2 − (ω)2
| 〈Σv|Q̂0

1|Σ′v′〉 |2, (3.42)

and
α±1±1(ω) = α⊥(ω) =

∑
Π′v′

2(EΠ′v′J′ − EΣvJ)

(EΠ′v′J′ − EΣvJ)2 − (ω)2
| 〈Σv|Q̂±1

1 |Π′v′〉 |2. (3.43)

The term α‖(ω) is the parallel electronic polarizability and involves transitions with excited elec-
tronic states with Ω = 0 and α⊥(ω) is the perpendicular electronic polarizability, related with tran-
sition to states with Ω = ±1 known as Π states. Using eqs. (3.42) and (3.43), the electronic
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Molecule α‖(0) α⊥(0)

KRb 748.7 382.9

LiCs 597.0 262.5

LiRb 524.3 246.5

RbCs 904.0 492.3

Table 3.1: Parallel and perpendicular electronic static polarizabilities used to compute the total
dynamical polarizability in eq. (3.45). Data taken from Ref. [57].

polarizability αeleqq for the molecular state |X1Σ+, v = 0, J = 0,M = 0〉 can be written as

αel
qq(ω) =

∑
J′M ′

(2J + 1)(2J ′ + 1)

 J ′ 1 J

−M ′ −q M

2


 J ′ 1 J

0 0 0

2

α‖(ω) + 2

 J ′ 1 J

1 −1 0

2

α⊥(ω)

 . (3.44)

The energy frequency of the transitions considered in eq. (3.44) are of the order of Eγ′v′J′ −
EΣvJ/~ ∼ 102 THz for alkali-diatomic molecules. Then in low frequency regime (ω < 5000 GHz),
α‖(ω) and α⊥(ω) will remain constant, thus they can be replaced by their static values α‖(0), α⊥(0).
Combining eqs. (3.41) and (3.44) (using α‖(0), α⊥(0)) into eq. (3.38), the explicit expression for
the total dynamical polarizability function of the molecular state |X1Σ+, v = 0, J = 0,M = 0〉 in the
low frequency regime is given by

αJMqq (ω) =
∑
J′M ′

(2J + 1)(2J ′ + 1)

 J ′ 1 J

−M ′ −q M

2

×

[∑
v′

| 〈vJ | Q̂0
1 |v′J ′〉 |2

2(Ev′J′ − EvJ)

(Ev′J′ − EvJ)2 − ω2

 J ′ 1 J

0 0 0

2

+

 J ′ 1 J

0 0 0

2

α‖(0) + 2

 J ′ 1 J

1 −1 0

2

α⊥(0)

]
, (3.45)

where we have dropped the Σ and v labels of the state notation for simplicity. The radial dipole
integrals 〈vJ | Q̂q1 |v′J ′〉 can be explicitly evaluated using the rovibrational wavefunctions |vJ〉 and
energies EvJ . We obtain |vJ〉 and EvJ by solving the corresponding nuclear Schrödinger equation
(i.e., vibrations plus rotations) using the Discrete Variable Representation (DVR) [60]. This method
requires the potential energy and the electric dipole function for the ground state (X1Σ+, v = 0, J =

0) as a function of the internuclear distance, which are taken from Ref. [61] for the molecules used
in this work: KRb, LiCs, LiRb and RbCs. Addicionally, the reported experimental values used for
α‖(0) and α⊥(0) are tabulated in Table 3.1 as taken from Ref. [57].

Fig. 3.3 shows the dynamical polarizability for selected ground state molecules evaluated at imag-
inary iω and real ω frequencies up to ω ∼ 5 THz (KRb, RbCs, LiRb and LiCs) using eq. (3.45). At
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Figure 3.3: Molecular dynamical polarizability computed at (a) imaginary frequencies (iω) and
(b) real frequencies (ω) using eq. (3.45) for different diatomic molecules in the electronic and
rovibrational ground state |X1Σ+, v = 0, J = 0,M = 0〉. The molecular transition v = 0→ v = 1 is
highlighted at ω ≈ 1.5 THz for RbCs.

imaginary frequencies, the figure shows the decreasing monotonic character of all molecular po-
larizability functions studied. Whereas at real frequencies, the molecules show their characteristic
resonances of the rovibrational transitions expected for ω < 5 THz.

Table 3.2 compares the static values of the total polarizability (eq.(3.45)) and the electronic polar-
izability (eq. (3.44)) with other theoretical results. Our numerical calculation does not exceed 1%

error.

Molecule α(0) [61] α(0) [This work] αele(0) [61] αele [This work]

KRb 1.141[5] 1.138[5] 513.1 504.8

LiCs 1.890[6] 1.890[6] 377 374

LiRb 9.198[5] 9.065[5] 346.1 339.1

RbCs 1.076[6] 1.065[6] 621.5 629.5

Table 3.2: Total and electronic molecular static polarizabilities (ω = 0) computed using eq. (3.45)
and (3.44), respectively, for molecules in aX1Σ+ state with v = 0 and J = 0. Our data is compared
with numerical data taken from Ref. [61]. The square parenthesis A[x] means A× 10x

As the frequency ω increases and reaches the THz regime (ω > 5 THz), all molecular functions
αJMqq (ω) tend asymptotically to their isotropic static polarizabilities αel

iso, and remain constant over
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a large frequency range up to several hundred THz [61]. It was shown in Ref. [61], that for
frequencies up to ∼ 103 THz, the isotropic electronic molecular polarizability can be accurately
approximated by

αel
iso(ω) =

2ωΣ d
2
Σ

ω2
Σ − ω2

+
2ωΠ d

2
Π

ω2
Π − ω2

, (3.46)

where the parameters ωΣ and dΣ are the effective transition energy and dipole moment associated
with the lowest Σ→ Σ transition. The parameters ωΠ and dΠ are associated with the lowest Σ→ Π

transition. For the alkali-metal dimers used in this work, we use the effective parameters listed in
Ref. [61] to estimate the electronic contribution to the molecular polarizability over the frequencies
of interest.
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Chapter 4

Long-range interaction between
Rydberg alkali-atoms and diatomic
molecules

In this Chapter, we describe the theoretical framework used to study the long-range interaction be-
tweeen an atom and a diatomic molecule. We derive the multipolar expansion of the electrostatic
interaction between two charge distributions in the spherical basis. We treat this interaction per-
tubartively. For ground state molecules, the first-order correction energy is zero regardless of the
atomic state. The second-order correction corresponds to the van der Waals interaction energy,
expressed in terms of the state-dependent dynamical polarizabities of the colliding particles.

4.1 Multipolar expansion of the electrostatic interaction

We consider two charge distributions A and B interacting through electrostatic forces that give
rise to a potential energy. We assume classical point-like charges for each distribution that do not
overlap with each other as shown in Fig. 4.1. The positions ri (rj) of the charges qi (qj) in A (B)
are given with respect to the center of mass AC (BC) of the distribution A (B). The vector joining
AC and BC is denoted by R. Without loss of generality, the center of mass AC is fixed in the
laboratory and is the origin of the coordinate frame xyz. The electrostatic potential energy VAB
between the two clouds in atomic units is given by

VAB =
∑
i∈A

∑
j∈B

qiqj
|R + rj − ri|

. (4.1)

Since the charge clouds do not overlap, we consider them to be far away such that

|R| � |ri|, |rj | ∀i ∈ A, ∀j ∈ B. (4.2)
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Figure 4.1: Charge distribution A and B in the xyz coordinate system.

The distance between two charges from different clouds can thus be written as

|R + rj − ri| =
√

(R− (ri − rj))2 =
√
R2 − 2R · rij + r2

ij , (4.3)

where R = |R| and the vector rij = ri − rj with norm rij = |rij |. Let us denote the unit vector in
R-direction as û, where R = Rû and the angle between the vectors û and rij as θij . Eq. (4.3)
takes the form

|R + rj − ri| = R

√
1− 2û · rij

R
+
r2
ij

R2
= R

√
1− 2rij cos θij

R
+
r2
ij

R2
. (4.4)

The reciprocal of eq. (4.4) can be we expanded using the generating series of Legendre polyno-
mials PL(x) as [48],

1

R

√
1− 2rij cos θij

R +
r2ij
R2

=

∞∑
L=0

rLij
RL+1

PL(cos θij). (4.5)

We denote the body-fixed coordinate system as uvw, with the û-axis joining the centers of mass
of the distributions. If we assume that the vector û lies along the ẑ-axis, the Legendre polynomial
in eq. (4.5) is proportional to the spherical harmonics Y 0

L (θij , ϕij) [48] where ϕij is the azimuthal
angle giving the orientation of rij in the body frame,

PL(cos θij) =

√
4π

2L+ 1
Y 0
L (θij , ϕij). (4.6)

Using eqs. (4.6) and (4.5), eq. (4.1) in the body-fixed frame (BF) becomes

V BFAB =
∑
i∈A

∑
j∈B

∞∑
L=0

qiqj
rLij
RL+1

√
4π

2L+ 1
Y 0
L (θij , ϕij). (4.7)

We can introduce the spherical coordinates (ri, θi, ϕi) of the vector ri and (rj , θj , ϕj) of rj in the
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body frame by using the following relation for the factor rLijY
M
L (θij , ϕij) [62],

rLijY
M
L (θij , ϕij) =

√
4π(2L+ 1)

∞∑
LA,LB=0

δLA+LB ,L

(−1)LBrLA
i rLB

j√
(2LA + 1)(2LB + 1)

×
LA∑

MA=−LA

LB∑
MB=−LB

CLMLAMA,LBMB
YMA

LA
(θi, ϕi)Y

MB

LB
(θj , ϕj), (4.8)

where CLMLAMA,LBMB
= 〈LAMA, LBMB |LM〉 is a Clebsch-Gordan coefficient, which can be written

explicitly as [48]

〈LAMA, LBMB |LM〉 = δMA+MB ,M

[
(2L+ 1)

(s− 2L)!(s− 2LB)!(s− 2LA)!

(s+ 1)!

×(LA +MA)!(LA −MA)!(LB +MB)!(LB −MB)!(L+M)!(L−M)!

]1/2

×
∑
ν

(−1)ν/
[
ν!(LA + LB − L− ν)!(LA −MA − ν)!(LB +MB − ν)!

×(L− LB +MA + ν)!(L− LA −MB + ν)!
]

(4.9)

where s = LA + LB + L and the index ν ranges over all integral values for which the factorial
arguments are nonnegative. According to eqs. (4.7) and (4.8) L = LA + LB , therefore, the sum
over ν in eq. (4.9) is restricted to ν = 0 and the Clebsch-Gordan coefficient for L = LA + LB

becomes

CLMLAMA,LBMB
=

√
(2LA)!(2LB)!(L+M)!(L+M)!

(2L)!(LA +MA)!(LA −MA)!(LB +MB)!(LB −MB)!
. (4.10)

Combining the relations (4.10) and (4.8) into (4.7), we find that M = 0→MA = −MB . Setting the
variable q = MA = −MB , the final expresion for V BFAB reads

V BFAB (R) =

∞∑
LA=0

∞∑
LB=0

L<∑
q=−L<

fLALBq

R1+LA+LB
QqLA

(rA)Q−qLB
(rB), (4.11)

where L< is the smallest of the integers LA and LB . The multipole moments QqLX
(rX) associated

with a particle X = (A,B) are written as,

QqLX
(rX) =

(
4π

2LX + 1

)1/2∑
i

qir
LX
i Y qLX

(θi, ϕi). (4.12)

Expectation values of the multipole moments depend on the electronic structure of the particle.
The factor fLALBq in eq. (4.11) becomes

fLALBq =
(−1)LB (LA + LB)!√

(LA + q)!(LA − q)!(LB + q)!(LB − q)!
. (4.13)

The BF is chosen the reference frame, thus the superscript ”BF” is dropped henceforth for simplic-
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ity.

4.2 Perturbation theory for the long-range interaction

In this Section, we consider the charge distribution A to correspond to a ground state heteronu-
clear diatomic molecule and the distribution B to an alkali-metal atom in a Rydberg state. In the
asymptotic limit R → ∞, the interaction potential VAB can be treated using quantum perturbation
theory [56], since the interaction energy is smaller than the transition energy between Rydberg
states (∆Enlj) and the rotational transition (∆Erot = 2Be) of the molecule.

The asymptotic two-particle eigenstates can be written as

|ΦAB〉 = |ΨA〉 |ΨB〉 , (4.14)

where the state for the molecule is |ΨA〉 ≡ |γvJΩM〉, an the atomic state is |ΨB〉 = |n(ls)jm〉.
The asymptotic energy of the atom-molecule system state is given by

E
(0)
AB = E

(0)
A + E

(0)
B , (4.15)

where E(0)
A ≡ EγvJ and E(0)

B ≡ Enlj .

4.2.1 First-order energy correction

The first-order correction to the two-particle energy is obtained by diagonalizing the interaction
matrix V̂AB in a given degenerate subspace S = |γvJΩM〉 |n(ls)jm〉, which is (2J+1)(2j+1)-fold
degenerate. The matrix elements 〈Ψ′A| 〈Ψ′B | V̂AB |ΨA〉 |ΨB〉 are given by

〈Ψ′A| 〈Ψ′B | V̂AB |ΨA〉 |ΨB〉 = 〈γ′v′J ′Ω′M ′| 〈n′(l′s′)j′m′| V̂AB |n(ls)jm〉 |γvJΩM〉 . (4.16)

Inserting eq. (4.11) we explicitly have

〈Ψ′A| 〈Ψ′B | V̂AB |ΨA〉 |ΨB〉 =

∞∑
LA=0

∞∑
LB=0

L<∑
q=−L<

fLALBq

R1+LA+LB
IA × IB , (4.17)

where
IA = 〈γ′v′J ′Ω′M ′| Q̂qLA

(r̂A) |γvJΩM〉 , (4.18)

and
IB = 〈n′(l′s′)j′m′| Q̂−qLB

(r̂B) |n(ls)jm〉 . (4.19)
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LA, LB ∆l ∆j ∆J

LA = LB = 1 ±1 0,±1 ±1

LA = 1, LB = 2 0,±2 0,±1,±2 ±1

LA = 2, LB = 1 ±1 0,±1 0,±2

LA = LB = 2 0,±2 0,±1,±2 0,±2

Table 4.1: Selection rules for the angular momentum states interacting via perturbing potential
V̂AB . These conditions are derived from the 3j-symbols of eqs. (4.20) and (4.21), where we took
Ω = Ω′ = 0 corresponding to electronic ground state molecules.

We use angular momentum algebra to rewrite IA and IB in a more explicit form. As discussed in
Chapter 3, Section 3.2, the molecular integral can IA can be written in a general form as

IA = (−1)M
′−Ω′ [J ′]1/2[J ]1/2

 J ′ LA J

−M ′ q M


×
∑
p

 J ′ LA J

−Ω′ p Ω

 〈γ′v′(J ′)| Q̂pLA
|γv(J)〉 , (4.20)

where [J ] = 2J + 1.

The atomic integral IB can be computed as in Chapter 2, Section 2.1.6 to give,

IB = (−1)j
′+j−m′+s+l[l′]1/2[l]1/2[j′]1/2[j]1/2

×

 l′ LB l

0 0 0

 j′ LB j

−m′ −q m


×

 l j s

j′ l′ LB

 〈n′(l′)| erLB |n(l)〉 . (4.21)

Selection rules for the interaction

Let briefly recall the triangle condition that 3j-symbol must satisfy in order to be different than zero.
For a 3j-symbol given by  j1 j3 j2

m1 m3 m2

 , (4.22)

|j1 + j2| ≥ j3 ≥ |j1 − j2| and m1 + m2 + m3 = 0. Table 4.1 show the selection rules for different
values of LA and LB in eqs. (4.20) and (4.21), where we have assumed that the molecule has
a zero electronic angular momentum state (Ω = Ω′ = 0). The 3j-symbols from eqs. (4.20) and
(4.21) define the selection rules for two given values of LA and LB , which determine the inverse
power of atom-molecule distance in the multipole expansion (4.11).

According to Table 4.1, the diagonal elements of the interaction V̂AB do not vanish for LA =
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LB = 2, giving rise to a first-order correction energy that scales as R−5. We are interested in the
rotational ground state (JA = J ′A = 0), for which there is no first-order atom-molecule interaction
because the molecules are neutral, i.e., 〈Q0

(LA=0)〉 = 0. A similar argument is valid for atoms in S
states. Atom-molecule interaction for molecules in the rotational ground state (or S state atoms)
would thus be expected to result in second-order corrections in the interaction potential.

The contribution of higher powers of R (LA, LB > 2) to first order in perturbation theory would
not be considered because the second-order contributions associated with the polarizabilities are
expected to be dominant for Rydberg atomic states.

Symmetries of the long-range potentials

From the 3j-symbols in eqs. (4.20) and (4.21), we find that the following relations must be satisfied

−M ′ + q +M = 0, −m′ − q +m = 0. (4.23)

Therefore, we identify the following conserved quantity

Ω = M +m = M ′ +m′, (4.24)

which characterizes the system state during the interaction. Ω is the projection of the total angular
momentum JZ = JZA + JZB of the system AB along the atom-molecule axis (not to be confused
with the angular momentum projection Ω in Chapter 3).

4.2.2 Second-order energy correction

Since the first-order correction to the energy of the asymptotic state |ΦAB〉 = |X1Σ, v = 0, J = 0,M = 0〉 |n(ls)jm〉
vanishes, we proceed to compute the energy correction up to a second-order. This is given by the
general expression

E
(2)
AB =

∑
A′B′(6=AB)

〈ΦAB |V̂AB |ΦA′B′〉 〈ΦA′B′ |V̂AB |ΦAB〉
(E

(0)
A − E

(0)
A′ ) + (E

(0)
B − E

(0)
B′ )

. (4.25)

The first non-zero contribution to the second-order interaction energy is given by the dipole-dipole
(LA = LB = 1) term in the multipole expansion, that is

V̂AB(R) = − 2

R3

1∑
q=−1

Q̂q1(r̂A)Q̂−q1 (r̂B)√
(1 + q)!(1− q)!(1 + q′)!(1− q′)!

, (4.26)
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which can be inserted in eq. (4.25) to give,

E
(2)
AB = − 4

R6

∑
A′B(6=AB)

1

(E
(0)
A′ − E

(0)
A ) + (E

(0)
B′ − E

(0)
B )

×
∑
qq′

[
〈Ψ(0)

A |Q̂
q
1|Ψ

(0)
A′ 〉 〈Ψ

(0)
B |Q̂

−q
1 |Ψ

(0)
B′ 〉 〈Ψ

(0)
A′ |Q̂

−q′
1 |Ψ(0)

A 〉 〈Ψ
(0)
B′ |Q̂

q′

1 |Ψ
(0)
B 〉

(1 + q)!(1− q)!(1 + q′)!(1− q′)!

]
. (4.27)

Equation (4.27) can be expressed as

E
(2)
AB(R) =

C6

R6
, (4.28)

where C6 is the dispersion coefficient, also known as van der Waals coefficient. From eq. (4.25)
it can also be infered that there are more terms to consider in eq. (4.27), i.e. VAB(R) =

∑
n
Cn

Rn

associated with other possibles values of LA and LB . However, we neglect those terms since they
are expected to be small compared with the contribution of C6.

We use the molecular state |ΨA〉 ≡ |X1Σ, v = 0, J = 0,M = 0〉 and the atomic state |ΨB〉 =

|n(ls)jm〉 in eq. (4.27) to define the products of transition dipole moments

TA(γ′v′J ′M ′) = 〈ΣvJM |Q̂q1(r̂B)|γ′v′J ′M ′〉〈γ′v′J ′M ′|Q̂−q
′

1 (r̂A)|ΣvJM〉, (4.29)

and

TB(n′j′l′m′) = 〈n(ls)jm|Q̂−q1 (r̂A)|n′(l′s)j′m′〉〈n′(l′s)j′m′|Q̂q
′

1 (r̂A)|n(ls)jm〉. (4.30)

Using eqs. (4.29) and (4.30) the atom-molecule C6 coefficient is thus given by

C6 = −
∑
qq′

∑
n′

∑
j′l′m′

∑
γ′v′

∑
J′M ′

K(q, q′)
TA(γ′v′J ′M ′)TB(n′j′l′m′)

(En′j′l′ − Enjl) + (Eγ′v′J′ − EΣvJ)
, (4.31)

where K(q, q′) ≡ 4/[(1 + q)!(1 − q)!(1 + q′)!(1 − q′)!]. Since the atomic and molecular transitions
that contribute to the atom-molecule interaction are in the microwave frequency domain, we can
restrict the summation over molecular states to the rovibrational levels of the ground electronic
states and the molecular energy will correspond to the rovibrational energies EvJ , thus eq. (4.31)
becomes

C6 = −
∑
qq′

∑
n′

∑
j′l′m′

∑
v′

∑
J′M ′

K(q, q′)
TA(γv′J ′M ′)TB(n′j′l′m′)

(En′j′l′ − Enjl) + (Ev′J′ − EvJ)
. (4.32)

The C6 dispersion coefficient can be written in a more practical form by using and alternative
approach for the evaluation of summations in eq. (4.32). This approach relies on the identities

1

a+ b
=

2

π

∫ ∞
0

dω
ab

(a2 + ω2)(b2 + ω2)
, (4.33)

and
1

a− b
=

2

π

∫ ∞
0

dω
ab

(a2 + ω2)(b2 + ω2)
+

2a

a2 − b2
, (4.34)

which are valid for a and b positive. We identify the parameters in the identities with the transition
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energies from the denominators in eq. (4.32) as

a = Ev′J′ − EvJ (4.35)

for molecular states. This parameter is always positive in our case since we consider the molecule
to be in the rovibrational ground state. The parameter b > 0 is defined as

b = En′l′j′ − Enlj (4.36)

for upward transitions (En′l′j′ > Enlj), and

b = Enlj − En′l′j′ (4.37)

for downward transitions (En′l′j′ < Enlj). Using these definitions it is possible to rewrite the sum-
over-states in eq. (4.32) as a sum of two contributions of the form

C6 = −
∑
q,q′

K(q, q′)

[∫ ωcut

0

dω

2π
αnljm−q−q′(iω)αJMqq′ (iω)

+
∑

n′l′j′m′

Θ(−∆En′l′j′)α
JM
qq′ (∆En′l′j′)Tnljm(n′l′j′m′)

]
, (4.38)

where ωcut is a cut-off frequency chosen such that the integral term converges.

The arguments of integral in eq. (4.38) are the dynamic atomic polarizability component αnljm−q−q′(z)
(see eq.(2.31)) and the dynamic molecular polarizability component αJMqq′ (z) (see eq. (3.45)), each
evaluated at the imaginary frequency z = iω. The second term in the square bracket represents
contributions from the molecular polarizability evaluated at the real downward atomic transitions,
with ∆En′l′j′ = En′l′j′ − Enlj . The Heaviside function Θ(x) enforces the downward character of
the transitions that contribute to this term. These terms are weighted by the product of the atomic
transition dipole integrals.

4.3 Dispersion coefficients of Rydberg alkali-atoms interact-
ing with ground state molecules

In this Section, we use the previous approach for the analysis on the long-range interaction be-
tween two sets of collision partners: (i) 133Cs Rydberg atoms interacting with LiCs and RbCs
molecules; (ii) 85Rb Rydberg atoms interacting with KRb, LiRb and RbCs molecules. We use eq.
(4.38) to compute the C6 coefficient of each atom-molecule pair considered, as a function of the
principal quantum number n of the atomic Rydberg state |n2lj〉. We restrict our calculations to
atomic states with 15 ≤ n ≤ 150 and l ≤ 2.

As it was mentioned in Section 4.2.1, the total angular momentum projection along the quantization
axis Ω = m + M is a conserved quantity for an atom-molecule collision. For molecules in the
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n2lj RLR(a0) RLR(nm)

152P1/2 410.89 21.74

202S1/2 806.23 42.66

402D5/2 4452.82 235.63

602P3/2 10076.97 533.25

802D3/2 19006.65 1005.79

Table 4.2: LeRoy radius for several Rydberg states of a cesium atom.

rovibrational ground state (J = 0), we have Ω = m.

Following the usual convention, we have that C6 < 0 defines an attractive potential, and C6 > 0

defines a repulsive potential.

The interaction length of the system is taken to be greater that the LeRoy radius [3]

RLR = 2

[√
〈r2
JM 〉+

√
〈r2
nl〉
]
, (4.39)

where 〈r2
JM 〉 and 〈r2

nl〉 are the mean square length of the molecular and atomic electronic cloud,
respectively. For ground state diatomic molecules, 〈rJM 〉 is of the order of 1− 10 a0, while 〈rnl〉 is
of the order 102− 103 a0 for the Rydberg states considered in this work. We can thus approximate
eq. (4.39) as

RLR ≈ 2
√
〈r2
nl〉. (4.40)

Since
√
〈r2
nl〉 scales as n2, also RLR does. Table 4.2 shows the values of the LeRoy radius RLR

using eq. (4.40) for a molecule-atom system that involves a Cs atom in a Rydberg state.

4.3.1 Cesium + Molecule

In Fig. 4.2 we plot the C6 coefficients for 133Cs Rydberg states n2lj interacting with LiCs and RbCs
molecules in the ground state |X1Σ, v = 0, J = 0〉, as a function of the atomic principal quantum
number n, for all allowed values of |Ω|.

For cesium Rydberg atoms in 2S1/2, 2P1/2 and 2P3/2 states (see panels (a), (b), (d), and (e) Fig.
4.2), the interaction with LiCs and RbCs ground state molecules is attractive over the entire range
of n considered.

The main contribution to the C6 coefficients comes from the integral (4.41), in which the molecular
dynamical polarizability is completely positive for the ground state, therefore the attractive interac-
tion is due to the mostly positive character of the atomic polarizability functions for the 2S1/2, 2P1/2

and 2P3/2 states at imaginary frequencies α(iω).

On the other hand, Cs atoms in 2D3/2 and 2D5/2 Rydberg states give rise to repulsive 1/R6

potentials. This repulsive character of the atom-molecule interaction is due to the predominantly
negative atomic polarizability function α(iω), while the molecular polarizability function remains
positive.
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Figure 4.2: Long-range interaction coefficients C6 as a function of the atomic principal quantum
number n, using 133Cs in a Rydberg state |n2lj〉 with (a),(b), and (c) for LiCs and (d), (e) and (f)
for RbCs molecules in the electronic and rovibrational ground state |X1Σ+〉 |v = 0, J = 0〉 for all
cases. The figures are sorted by the total angular momentum projection of the system Ω = m+M
along the atom-molecule axis, which is a conserved quantity through out the collision. Also, the
quantum angular momentum numbers 2lj of the interacting atom are shown in all panels. We
assume the interaction to happen at long distances (R > RLR), where the system state can be
express as tensor product of each particle state |n2lj ,m〉 ⊗ |X1Σ+vJM〉.
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4.3.2 Rubidium + Molecule

In Fig. 4.3 we plot the C6 coefficients for 85Rb Rydberg states |n2lj〉 interacting with KRb, LiCs and
RbCs molecules in the rovibrational ground state, as a function of the atomic principal quantum
number n, for l ≤ 2. The C6 coefficients for 2S1/2, 2P1/2 and 2P3/2 atomic Rydberg states behave
the same as interacting Cs atoms with ground state molecules, giving rise to attractive potentials.
In this case, 2Dj states do not give rise to repulsive potentials. Both, the atomic and the molecular
dynamical polarizability are predominantly positive.
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Figure 4.3: Long-range interaction coefficients C6 as a function of the atomic principal quantum
number n, using 85Rb in a Rydberg state |n2lj〉 with (a),(b), and (c) for KRb and (d), (e), and
(f) for LiRb and (g), (h), and (i) for RbCs molecules in the electronic and rovibrational ground
state |X1Σ+〉 |v = 0, J = 0〉 for all cases. The figures are sorted by the total angular momentum
projection of the system Ω = m+M along the atom-molecule axis, which is a conserved quantity
through out the collision. Also, the quantum angular momentum numbers 2lj of the interacting
atom are shown in all panels. We assume the interaction to happen at long distances (R > RLR)
between the particles, where the system state can be express as tensor product of each particle
state |n2lj ,m〉 ⊗ |X1Σ+vJM〉.
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Figure 4.4: I6 and D6 contributions as a function of the atomic principal quantum number for (a),
(b) RbCs-Cs, with the molecule in the electronic and rovibrational ground state X1Σ+, v = 0, J = 0
and the atom in D5/2 state and for (c), (d) RbCs-Rb in the same molecular and atomic states. The
results are presented for different total angular momentum projection Ω.

4.3.3 Frequency integral contribution

According to eq. (4.38) there are two terms that contribute to the C6 coefficients, the integral term
and the downward transitions term, given respectively by

I6 =

∣∣∣∣∣∣
∑
q,q′

K(q, q′)

[∫ ωcut

0

dω

2π
αnljm−q−q′(iω)αJMqq′ (iω)

]∣∣∣∣∣∣ (4.41)

and

D6 =

∣∣∣∣∣∣
∑
q,q′

∑
n′l′j′m′

K(q, q′)Θ(−∆En′l′j′)α
JM
qq′ (∆En′l′j′)Tnljm(n′l′j′m′)

∣∣∣∣∣∣ . (4.42)

We studied the contributions to C6 coming from (4.41) and (4.42), separately. Figure 4.4 shows
the values of the I6 and D6 for RbCs molecules in the ground state interacting with Cs in a 2D5/2

state as a function of the atomic principal quantum number (panel (a) for I6 and panel (b) for
D6). Panels (c) and (d) show I6 and D6 respectively for RbCs-Rb, with Rubidium in the atomic
state 2D5/2. Results are shown for different values of |Ω|. Panel (d) of Fig. 4.4 shows a non-
monotonic behavior of D6 as a function of n. This is due to the approximate elimination of resonant
frequencies. Since D6 involves the evaluation of the atomic transitions energy ∆En′l′j′ into the
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Figure 4.5: Relative change ∆C6/C6 at different cutoff frequencies ωcut for a ground state KRb
molecule interacting with Rubidium in a Rydberg state n2lj . The results are presented for different
total angular momentum projection |Ω|.

molecular polarizability function αJMqq′ , those terms which are equal to the rotational transitions in
the molecule, i.e. ∆En′l′j′ = 2Be, are removed from the summation of eq. (4.42). Resonant terms
would contribute to the C3 coefficients, which describe resonant energy transfer via dipole-dipole
interaction between the molecule and the atom.

As n increases, the I6 contribution becomes larger compared with the contribution of D6 (see Fig.
4.4). The ratio of I6/D6 is of the order of 102 for n = 15 and reaches values of 1012 for n = 150.
Therefore, the main contribution to the C6 coefficients comes from the integral term (4.41). We
find a strong dependence of C6 on the atomic and molecular dynamical polarizability.

One way to qualitatively understand this result is to compare the n7 scaling of the static atomic
polarizability α(0) (related to I6) with the n2 scaling of the radial dipole integrals 〈rnl〉 for Rydberg
states (related to D6). The ratio between I6 (polarizability) and D6 (dipole), in terms of n, can thus
scale at least as n3.

On the other hand, both I6 and D6 depend on the molecular polarizability. For I6 involving
αJMqq′ (iω), this function in the low frequency regime ω ≤ 5 THz is completely positive and de-
creases rapidly from 106 a.u. to 102 a.u. for all considered dimers (see Fig. 3.3 (a)). For D6

involving αJMqq′ (ω = ∆En′l′j′), this function is evaluated at real frequencies with an approximate
constant polarizability value of the order of 102 a.u. (see Fig. 3.3 (b)).
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Based on the results above, we conclude that the behavior of C6 coefficients presented here for
alkali diatomic molecules in the electronic and rovibrational ground state and alkali Rydberg atoms,
exhibit a strong dependence on the atomic dynamical polarizability. Therefore, mostly negative
atomic polarizability functions are expected to give rise to repulsive long-range potentials, while
mostly positive atomic polarizability functions would give rise to attractive potentials.

The integral I6 involves a cut-off frequency ωcut. In order to estimate ωcut, we tested the numer-
ical convergence of the integration by increasing the value of the cutoff until the relative change
∆C6/C6 was smaller than a predefined tolerance ε. Fig. 4.5 shows the results of this study. For
molecule-atom pairs involving 133Cs and 85Rb atoms, the polarizability integral converges faster
with increasing cutoff for intermediate and high values of n & 30, in comparison with low-n states.
The latter result in a slower convergence. We converged all our n ≈ 15 integrals at ωcut = 3 THz
with a tolerance ε = 0.01, which ensures convergence over an entire range of n.

4.3.4 Scaling of C6 with n

For both attractive and repulsive interactions, the magnitude of C6 scales as ∼ n7 over a wide
range of n. We fit the computed C6 coefficients as a function of the atomic principal quantum
number n to the polynomial

C6 = γ0 + γ4 n
4 + γ6 n

6 + γ7 n
7. (4.43)

This scaling is valid in the range n ≈ 40 − 150, with a fit quality that improves with increasing
n. We list the fitting coefficients for Cs-LiCs and Cs-RbCs pairs in Table 4.4 for all atomic angular
momentum states considered. The corresponding fitting coefficients for the collision pairs Rb-KRb,
Rb-LiRb, and Rb-RbCs, are given in Table 4.5.

The n7 scaling found for C6 is the same scaling of the static polarizability of Rydberg atoms [22].
This suggests that the long-range interaction potential is dominated by the giant Rydberg polariz-
ability, as expected.

Also, Table 4.3 compares the C6 coefficients computed with eq. (4.38) and (4.43) for a ground
state KRb molecule interacting with Rb atom in a 2P3/2, with |Ω| = 3/2. Eq. (4.43) predicts the C6

coefficients with an error smaller that 10% for n > 50.

Given the n2 scaling of the LeRoy radius RLR (4.40) and the n7 scaling of the atom-molecule C6

coefficients, thus, the van der Waals energy should approximately scale as UvdW ≡ C6/R
6
LR ∼

n−5. We find this scaling to be most accurate for n & 50.
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n C6 (eq. 4.38) C6 fit (eq. 4.43) Error

40 -1.4476[10] -1.4552[10] 0.007[10]

50 -6.8177[10] -8.5246[10] 1.707[10]

60 -2.2892[11] -2.6258[11] 0.337[11]

70 -6.2135[11] -6.4374[11] 0.224[11]

80 -1.4146[12] -1.3749[12] 0.040[12]

120 -1.2839[13] -1.2843[13] 0.0004[13]

150 -4.1326[13] -4.1326[13] 0.00005[13]

Table 4.3: Comparison of the C6 coefficients computed using eq. (4.38) and (4.43) with the pa-
rameter shown in Table 4.5 for KRb-Rb for an atomic state 2P3/2, |Ω = 3/2|. The notation A[x]
means A× 10x.

Molecule l j |Ω| γ0 γ4 γ6 γ7

LiCs

S 1/2 1/2 1.518[11] -1.035[5] -30.94 0.1630

P

1/2 1/2 2.104[12] -1.984[6] 162.1 -1.606

3/2
1/2 2.307[12] -2.366[6] 238.2 -2.375

3/2 2.149[12] -2.186[6] 225.5 -2.236

D

3/2
1/2 -1.428[12] 1.708[6] -226.6 1.879

3/2 -5.864[11] 7.756[5] -134.4 1.090

5/2

1/2 -1.431[12] 1.909[6] -289.5 2.469

3/2 -1.081[12] 1.462[6] -234.1 1.973

5/2 -3.809[11] 5.716[5] -123.2 0.9800

RbCs

S 1/2 1/2 -2.907[10] 2.757[4] -13.25 0.05058

P

1/2 1/2 -3.542[11] -1.737[5] -3.808 -0.4723

3/2
1/2 4.866[11] -2.753[5] 18.15 -0.7826

3/2 4.425[11] -2.588[5] 19.43 -0.7408

D

3/2
1/2 -3.906[11] 2.610[5] -31.40 0.5847

3/2 -2.156[11] 1.565[5] -26.86 0.3579

5/2

1/2 -4.818[11] 3.501[5] -53.47 0.8316

3/2 -3.846[11] 2.821[5] -45.57 0.6657

5/2 -1.901[11] 1.458[5] -29.63 -0.3334

Table 4.4: Parameters for the fitting C6 = γ0 + γ4 n
4 + γ6 n

6 + γ7 n
7, for selected atom-molecule

pairs involving 133Cs atoms in Rydberg states |n2lj〉, interacting with LiCs and RbCs molecules in
the ground electronic and rovibrational state. Ω = m is the total angular momentum projection of
the collision pair. C6 is in atomic units (a3

0). The fitting is accurate in the range n = 40 − 150. The
notation A[x] means A× 10x.
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Molecule l j |Ω| γ0 γ4 γ6 γ7

KRb

S 1/2 1/2 4.340[9] -1905 -0.5274 4.695[-4]

P

1/2 1/2 1.155[10] 27.48 -6.706 0.02190

3/2
1/2 1.429[10] -840.9 -7.419 0.02381

3/2 1.227[10] 9.555 -7.089 0.02286

D

3/2
1/2 4.907[9] -3284 0.1596 -1.883[-3]

3/2 6.531[9] -2307 -2.039 6.199[-3]

5/2

1/2 3.298[9] -2486 0.4228 -2.302[-3]

3/2 4.481[9] -2337 -0.5691 1.173[-3]

5/2 6.782[9] -2026 -2.521 8.018[-3]

LiRb

S 1/2 1/2 1.381[11] -1.085[5] 6.408 -0.04418

P

1/2 1/2 5.353[11] -4.224[5] -13.06 0.01194

3/2
1/2 6.063[11] -4.839[5] -12.77 1.718[-3]

3/2 5.598[11] -4.420[5] -14.57 0.01386

D

3/2
1/2 1.091[11] -1.040[5] 11.58 -0.06377

3/2 2.100[11] -2.024[5] 3.214 -0.03349

5/2

1/2 8.086[10] -7.309[4] 10.89 -0.05510

3/2 1.317[11] -1.237[5] 7.670 -0.04539

5/2 2.309[11] -2.225[5] 1.254 -0.02591

RbCs

S 1/2 1/2 1.316[10] -3897 -2.743 -7.242[-3]

P

1/2 1/2 -1.576[10] 5.049[4] -39.63 0.07148

3/2
1/2 -1.225[10] 5.381[4] -44.40 0.07713

3/2 -1.640[10] 5.347[4] -41.94 0.07316

D

3/2
1/2 2.285[10] -1.490[4] 1.265 -0.01663

3/2 9.039[9] 7469 -12.55 0.01839

5/2
3/2 5.808[10] -1.796[4] -1.099 -0.01126

5/2 5.978[10] -2261 -13.17 0.01667

Table 4.5: Parameters for the fitting C6 = γ0+γ4 n
4+γ6 n

6+γ7 n
7, for selected atom-molecule pairs

involving 85Rb atoms in Rydberg states |n2lj〉, interacting with RbCs, LiRb and KRb molecules in
the ground electronic and rovibrational state. Ω = m is the total angular momentum projection of
the collision pair. C6 is in atomic units (a3

0). The fitting is accurate in the range n = 40 − 150. The
notation A[x] means A× 10x.
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4.3.5 Error bounds on C6 values

There are two terms that must be consider in order to estimate the accuracy of the frequency
integral in eq. (4.38) which has the major contribution to the van der Waals coefficients as we
explaneid in Section 4.3.3. The first one is the the molecular dynamical polarizability and the
second one is the atomic dynamical polarizability of a Rydberg state.

The rovibrational structure and electrostatic response of most alkali-metal dimers in the ground
X1Σ state is well-known from precision spectroscopy experiments and accurate ab-initio studies
[57, 19, 63]. Therefore, the molecular polarizability function αJMqq in eq. (3.45) is assumed to be
known with very high precision, our computed static molecular polarizabilities differ from the results
in Ref. [61] by less than 1%, as we showed in Chapter 3. These polarizability functions evaluated
at imaginary frequencies αJMqq (iω) is always positive and have their maximum value at ω = 0, as
the frequency increses the polarizabilities tend asymptotically to their isotropic static values αel

iso

for each considered molecule. Therefore the molecular polarizabilities are bounded from above by
their static value.

For the atomic Rydberg states considered, the polarizability functions obtained from eq. (2.31) are
predominantly monotonic as a function of frequency, although we found specific states |n2lj ,m〉
with non-monotonic frequency dependence (see Chapter 3). Again, the maximum absolut value
of the atomic polarizability at imaginary frequencies occur when ω = 0. For higher frecuencies
the polarizability increses or decreses, depending on the atomic states, and tend to an asymptotic
value up to a cutoff frequency ωcut of a few THz. In general, for all the atomic states considered,
we find that |αnljmqq (iω)| is always bounded from above by its value at ω = 0.

The accuracy of our computed atomic polarizability functions αnljmqq (iω) is limited by the precision
of the quantum defects used, which we take from spectroscopic measurements [27].

The error of the computed C6 coefficients can thus be estimated for n ≥ 15 as follows. Ignoring the
downward transition terms (D6), and the error in the molecular polarizability function, eq. (4.38)
can be written as C̃6 = C6±δC6, where C̃6 is the dispersion coefficient obtained in our calculations,
and the error is approximately given by

δC6 ≈ −
∑
q,q′

K(q, q′)

2π

∫ ωcut

0

dω

2π
δαnljmqq′ (iω)αJM−q−q′(iω), (4.44)

where δαnljmqq′ (iω) is the error in the atomic polarizability function evaluated at imaginary frequen-
cies. The order of magnitude of the product integral

∫
αnljmqq′ (iω)αJM−q−q′(iω) is the same for all

qq′-components, thus we can assume that the relative error δαnljmqq (iω)/αnljmqq (iω) is the same for
all qq′-components and remains constant over all frequencies up to the cutoff ωcut. We use the
fact that |α(iω)| is bounded from above by its static value in the atomic and molecular cases, we
can estimate an approximate error bound for C6 in terms of the relative error of the 00-component
as ∣∣∣∣δC6

C6

∣∣∣∣ .
∣∣∣∣∣δαnljm00 (0)

αnljm00 (0)

∣∣∣∣∣ . (4.45)

In other words, the accuracy of our C6 calculations cannot expected to be better than the accuracy
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of the static atomic polarizability. The static polarizabilities of several Rydberg states of 85Rb and
133Cs are known from laser spectroscopy measurements in static electric fields [64, 46, 65], and
also from precision calculations using state-of-the-art ab-initio pseudo-potentials [49]. Therefore,
we estimated δαnljm00 (0) for several atomic Rydberg states |n2lj ,m〉, by comparing with available
data (see Table 2.8). The average relative errors for Rb is −0.02% for 2S1/2 states over the range
15 ≤ n ≤ 50 for 2S1/2 states, +0.27 % for 2D5/2 states with m = 5/2, and +0.13 % for 2D3/2 states
with m = 3/2. Similar accuracies are obtained for Cs.

Another possible source of error in our C6 calculations is the choice of the high frequency cutoff
ωcut in the numerical integration of eq. (4.38).

4.3.6 Effect of the molecular dipole moment

In Fig. 4.6 we show the increase in the magnitude of C6 as the permanent dipole moment of alkali-
metal dimers increases, for selected states n2P1/2 of 85Rb. The C6 coefficient for the Rb-LiRb pair
is larger than the corresponding values for RbCs and KRb, which have a smaller dipole moment.
The same trend also holds for other |n2lj〉 states of 85Rb, and for atom-molecule pairs involving
133Cs atoms.
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Figure 4.6: Bar plots log10|C6| for n = 15, 50, 80 for atom-molecule pairs involving 85Rb atoms
in the n2P1/2 state with KRb, RbCs and LiRb molecules in the rovibrational ground state. The
permanent dipole moment of each molecule is shown in parenthesis on the horizontal axis [57].

51



Chapter 5

Conclusions and Outlook

In this Thesis, we theoretically study the long-range interaction between Rydberg alkali-atoms and
diatomic molecules. The interaction potential in the molecule-Rydberg system at large distances
is small compared with the energy of each particle, therefore it is treated using quantum pertu-
bation theory and given in terms of the atomic and molecular dynamical polarizability functions.
We study 133Cs and 85Rb atoms in a Rydberg state |n2lj ,m〉 with l ≤ 2 and 15 < n < 150 inter-
acting with KRb, LiCs, LiRb and RbCs molecules in the electronic and rovibrational ground state
|X1Σ+, v = 0, J = 0,M = 0〉. For this molecular state the interaction is determined by the C6 van
der Waals coefficient and the interaction scales in terms of the particles relative distance as C6/R

6.
We found that the atomic polarizabilty function evaluated at imaginary frequencies iω has a crucial
role in the interaction: determines the magnitude and the nature of the interaction, i.e. whether it
is attractive (C6 < 0) or repulsive (C6 > 0).

We also found that the interaction is not only determined by atomic properties and quantum num-
bers, the interacting molecule may enhance the interaction according to its permanent dipole mo-
ment, i.e. polar molecules with higher permanent dipole moment experience a stronger interaction
compare with molecules with smaller permanent dipole moment, assuming that both are interact-
ing with the same atomic species and in the same atomic quantum state. Therefore, it is possible
to find an atomic Rydberg state and a molecule that gives an attractive or repulsive potential with
a desired interaction strength.

Repulsive van der Waals interactions may be used for sympathetic cooling of alkali-metal dimers
via elastic collisions with ultracold Rydberg atoms. For example, for the LiCs-Cs system with
133Cs in the n2D5/2 state and |Ω = 5/2|, the van der Waals potential is repulsive (Fig. 4.2(c))
and can be estimated in absolute units with a collisional barrier reaching UvdW ≈ 38 MHz for
n = 20. This should be sufficient to avoid short-range collisions for atom-molecule pairs with
relative kinetic energy up to 1.82 mK. By increasing the atomic quantum number to n = 40, the
potential barrier drops to UvdW ≈ 0.43 MHz for the same collision pair. Since inelastic and reactive
ultracold collisions [66, 67] can lead to spontaneously emitted photons carrying energy away from
a trapped system [10], it should be possible to measure the elastic-to-inelastic scattering rates and
follow the thermalization process of a co-trapped atom-molecule mixture.
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Attractive van der Waals potentials can be exploited to form long-range alkali-metal trimers via
photoassociation [68]. Using eq. (1.1) from Chapter 1, we can extend the long-range potential
to the short-range by setting R0 = C6 and compute the system wavefunction in the whole range,
by finding the Franck-Condon overlap [69, 70] between two system states, we can estimate the
photoassociation rates.

We can extend the formalism in this work to also obtain van der Waals coefficients for excited
rovibrational states of alkali-metal dimers. In this case, C5 coefficients do not vanish in general
[15]. The interplay between C5 and C6 with opposite signs at long distances can possibly lead
to long-range potential wells that can support Rydberg-like metastable bound states accessible in
photoassociation spectroscopy [13, 14, 15, 71].
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Appendix A

Numerov algorithm

In this Appendix we derive the Numerov algorithm, which is designed to numerically solve ordinary
differential equations of the form

d2y(x)

dx2
+ k2(x)y(x) = 0. (A.1)

We start by applying the operator 1 + h2

12
d2

dx2 , where h is very small number, into eq. (A.1) to obtain

h4

12
y(4) + y(2) +

h2

12

d2

dx2

[
k2(x)y(x)

]
+ k2y(x) = 0, (A.2)

where y(n) ≡ dny(x)
dxn . Expanding y(x+h) and y(x−h) in Taylor series around h and−h, respectively,

y(x+ h) = y(x) + hy(1)(x) +
h2

2!
y(2)(x) +

h3

3!
y(3)(x) +

h4

4!
y(4)(x) + ..., (A.3)

and

y(x− h) = y(x)− hy(1)(x) +
h2

2!
y(2)(x)− h3

3!
y(3)(x) +

h4

4!
y(4)(x) + ... (A.4)

Adding y(x+ h) and y(x− h),

y(x+ h) + y(x− h) = 2y(x) + h2y(2)(x) +
h4

12
y(4)(x), (A.5)

and solving for y(2), we obtain

y(2)(x) =
y(x+ h) + y(x− h)− 2y(x)

h2
− h4

12
y(4)(x). (A.6)

We replace eq. (A.6) into (A.2) to obtain

y(x+ h) + y(x− h)− 2y(x)

h2
+
h2

12

d2

dx2

[
k2(x)y(x)

]
+ k2y(x) = 0. (A.7)
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APPENDIX A. NUMEROV ALGORITHM

The expression d2

dx2

[
k2(x)y(x)

]
can be approximate using the derivative definition given by

d

dx

[
k2(x)y(x)

]
≈ k2(x+ h)y(x+ h)− k2(x)y(x)

h
, (A.8)

explicitly,
d2

dx2

[
k2(x)y(x)

]
≈

k2(x+h)y(x+h)−k2(x)y(x)
h − k2(x)y(x)−k2(x−h)y(x−h)

h

h
, (A.9)

d2

dx2

[
k2(x)y(x)

]
≈ k2(x+ h)y(x+ h)− 2k2(x)y(x) + k2(x− h)y(x− h)

h2
. (A.10)

Replacing eq. (A.10) into (A.7) and solving for y(x+ h), we obtain

y(x+ h) =
y(x)

[
2− 5h2

6 k2(x)
]
− y(x− h)

[
1 + h2

12k
2(x− h)

]
1 + h2

12k
2(x+ h)

. (A.11)

If we label de continuos variable x as a discrete one as j, then eq. (A.11) becomes

yj+h =
2yj

[
1− 5h2

12 k
2
j

]
− yj−h

[
1 + h2

12k
2
j−h

]
1 + h2

12k
2
j+h

. (A.12)

According to eq. (A.12), this algorithm requires to know the values of y0 and y1 to move forward
through the lattice, or know the values at last lattice sites yN−1 and yN to move backwards through
the lattice.
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Appendix B

Dynamical polarizability function

In this Appendix a detailed derivation of the dynamical polarizability function is provided for general
polarizable system. The polarizability is found by considering the lowest order correction to the
electric-dipole moment of the system [50].

Let ψ(0)
k for k = 1, 2, 3... be the eigenfunctions of the unperturbed Hamiltonian Ĥ0 that satisfies the

time-independent Schrodinger equation

Ĥ0ψ
(0)
k = E

(0)
k ψ

(0)
k , (B.1)

where E(0)
k is the unperturbed energy corresponding to the k-th state.

Supose that we apply a time-dependent perturbing Hamiltonian ĤI(t) given by

ĤI(t) = V̂ eiωt + h.c., (B.2)

where h.c. is the Hermitian conjugate and the operator V̂ is given by

V̂ = −1

2
p̂ ·E0, (B.3)

where p̂ is the quantum dipole moment operator, given by

p̂ =
∑
i

qir̂i, (B.4)

where qi is the charge of the i-th particle in the system at the r̂i position. Assuming a time-
dependent electric field oscillating with frequency ω and form

E(t) = E0e
−iωt + E†0e

iωt. (B.5)

where E0 is the vector amplitude that contains the polarization of the field.

Let us consider the system to be initially in the quantum state k and the perturbing Hamiltonian
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couples the inicial state with the state l, we can write the system wavefuncion in a general way as

φ(t) = ak(t)ψ
(0)
k e−iE

(0)
k t/~ + al(t)ψ

(0)
l e−iE

(0)
l t/~ (B.6)

where ak, al are chosen in such a way that they satisfy the Schrodinger equation

i~
∂

∂t
φ(t) =

[
Ĥ0 + ĤI

]
φ(t). (B.7)

Replacing eq. (B.6) into (B.7) we obtain

i~ȧkψ(0)
k e−iE

(0)
k t/~ + i~ȧlψ(0)

l e−iE
(0)
l t/~ =

akĤIψke
−iE(0)

k t/~ + alĤIψle
−iE(0)

l t/~, (B.8)

where ȧk ≡ d
dtak and we have omitted the time-dependency of the coefficients ak, al. Multipling

the eq. (B.8) by ψ∗(0)
l eiE

(0)
l t/~ from the left and integrating over the spacial coordinates, eq. (B.8)

becomes
i~ȧl(t) = ak(t)

[
Vlke

i(ωlk−ω)t + V †lke
i(ωlk+ω)t

]
(B.9)

where wlk =
(
E

(0)
l − E

(0)
k

)
/~ and Vlk is a matrix element of the perturbing potential, explicitly

Vlk =

∫
ψ
∗(0)
l V̂ ψ

(0)
k d3r, (B.10)

where d3r is the volume element. We had assumed in eq. (B.9) that the diagonal elements of
the interaction Hamiltonian are cero, i.e. Vii = 0. Eq. (B.9) can be integrated assuming that the
amplitude ak(t) varies much slowly than the oscillating frequency ωlk ± ω at the interval [t0, t],
where |al(t0)| = 0 and |ak(t0)| = 1. Therefore, the solution for the amplitude al becomes

al(t) = −ak(t0)

[
Vlk(ei(ωlk−ω)t − ei(ωlk−ω)t0)

~(ωlk − ω)
+
V †lk(ei(ωlk+ω)t − ei(ωlk+ω)t0)

~(ωlk + ω)

]
. (B.11)

Let’s consider a general operator Ĝ that is time-independent, using the general system state φ(t),
we will compute the matrix element of Ĝ as∫ [

φ∗Ĝφ
]
d3r = |ak|2Gkk + a∗kalGkle

−iωlkt + aka
∗
lGlke

iωlkt + |al|2Gll, (B.12)

where
Gkl =

∫
ψ
∗(0)
k Ĝψ

(0)
l d3r. (B.13)

is time-independent. The first term on the right hand side of eq. (B.12) is the zeroth-order cor-
rection of the operator and it is independent of the perturbing potential (B.2). The last term is
second-order in the perturbing Hamiltonian (involving |al|2). The two intermediate terms are the
first-order correction and we will focus in this correction. We can replace eq. (B.11) into (B.12)
keeping only the first-order correction, making |ak(t)| = |ak(t0)| = 1 and retaining only the har-
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monic terms ωt, eq. (B.12) to the first-order becomes

[∫
φ∗Ĝφd3r

](1)

= −
[
e−iωt

(
VlkGkl

~(ωlk − ω)
+

VklGlk
~(ωlk + ω)

)
+ eiωt

(
V ∗klGkl

~(ωlk + ω)
+

V ∗lkGlk
~(ωlk − ω)

)]
.

(B.14)
We will briefly recall the time-independent perturbation theory [56] in order to obtain the static
polarizability expression.

The energy correction of the k state under a perturbing potential V̂ is given by

Ek = E
(0)
k + Vkk +

∑
l(6=k)

|Vkl|2

E
(0)
k − E

(0)
l

+ ..., (B.15)

Let’s focus on the second-order correction term of the energy in eq. (B.15) that using eq. (B.3)
can be written as

E
(2)
k =

∑
l(6=k)

p̂∗klp̂lk

E
(0)
k − E

(0)
l

E2
0. (B.16)

Or using the well-known expression

E
(2)
k = −1

2
αE2

0 (B.17)

where α is the static polarizability given by

α = 2
∑
l(6=k)

p̂∗klp̂lk

E
(0)
k − E

(0)
l

. (B.18)

We must consider an external electric field E of the form (B.5) in order to obtain the explicit expres-
sion of the frequency-dependent polarizability, which is defined by only considering the first-order
correction to the diagonal matrix element of the dipole operator [50]. Therefore, for an harmonic
external electric field the induced dipole moment can be written as

p̂
(1)
kk (t) =

1

2

[
p̂kke

−iωt + c.c.
]
, (B.19)

where c.c. is the complex conjugate of previous expression. We can relate the diagonal matrix
element of the i-th component of the electric dipole moment operator with the polarizability tensor
by [50]

(p̂i)kk = (α̂ij)kk(E0)j , (B.20)

where (α̂ij)kk is the ij-th component of the polarizability tensor at frequency ω for a system in
the k-th state. If we take the electric dipole moment operator p̂i instead of Ĝ and replace V̂ =

(1/2)p̂ ·E0, eq. (B.14) takes the form

(p̂i)
(1)
kk =

1

2

∑
l(6=k)

[
e−iωt

(
(p̂i)kl(p̂j)lk(E0)j

~(ωlk − ω)
+

(p̂i)lk(p̂j)kl(E0)j
~(ωlk + ω)

)

+eiωt
(

(p̂i)kl(p̂j)
∗
kl(E0)∗j

~(ωlk + ω)
+

(p̂i)lk(p̂j)
∗
lk(E0)∗j

~(ωlk − ω)

)]
. (B.21)

The sum over l consider in eq. (B.21) is the general expression of (B.14) considering that the
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purturbing Hamiltonian couples the state k with several quantum states [50]. Comparing eq. (B.21)
with eqs. (B.20) and (B.19) we find the ij-th component of the polarizability tensor at frequency ω
for a system in the k-th state, given by

(α̂ij)kk(ω) =
∑
l( 6=k)

[
(p̂i)kl(p̂j)lk
~(ωlk − ω)

+
(p̂i)lk(p̂j)kl
~(ωlk + ω)

]
. (B.22)

Since the matrix elements of the electric dipole operator are real, i.e. (p̂j)
∗
kl = (p̂j)kl and for con-

venience of the angular momentum states consider in this work ψk ≡ |k〉, we can write the dipole
moment operator using the spherical tensor operators as p̂q ≡ Q̂q1, where (Q̂q1)† = (−1)−qQ̂−q1 .
The final expression for the dynamical polarizabilty can be written as,

(α̂qq′)kk(ω) = 2(−1)q
∑
l(6=k)

E
(0)
l − E

(0)
k(

E
(0)
l − E

(0)
k

)2

− ω2

〈k|Q̂q1|l〉 〈l|Q̂
−q′
1 |k〉 , (B.23)

where we had used qq′ instead of ij.
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