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Abstract. Implementing a scalable quantum information processor using polar molecules in optical lattices requires
precise control over the long-range dipole-dipole interaction between molecules in selected lattice sites. We present
here a scheme using trapped open-shell 2Σ polar molecules that allows dipolar exchange processes between nearest
and next-nearest neighbors to be controlled to construct a generalized transverse Ising spin Hamiltonian with tunable
XX, Y Y and XY couplings in the rotating frame of the driving lasers. The scheme requires a moderately strong bias
magnetic field with near-infrared light to provide local tuning of the qubit energy gap, and mid-infrared pulses to
perform rotational state transfer via stimulated Raman adiabatic passage. No interaction between qubits is present
in the absence of the infrared driving. We analyze the fidelity of the resulting two-qubit matchgate, and demonstrate
its robustness as a function of the driving parameters. We discuss a realistic application of the system for universal
matchgate quantum computing in optical lattices.
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1. Introduction

The concept of entanglement has evolved from being regarded as a perplexing and even undesirable consequence of
quantum mechanics in the early studies by Schrödinger [1, 2] and Einstein [3], to being now widely considered as a
fundamental technological resource that can be harnessed in order to perform tasks that exceed the capabilities of
classical systems [4]. Besides its pioneering applications in secure communication protocols and quantum computing
[5], entanglement has also been found to be an important unifying concept in the analysis of magnetism [6, 7, 8, 9],
electron correlations [10, 11] and quantum phase transitions [9]. Many properties and applications of entanglement
have been demonstrated using a variety of physical systems including photons [12, 13], trapped neutral atoms
[14, 15, 16, 17], trapped ions [18, 19, 20], and hybrid architectures [21, 22]. Entanglement has also been shown to
persist in macroscopic [23, 24, 25] and biological systems [26, 27, 28].

Neutral atomic and molecular ensembles in optical traps are a promising platform for the study of quantum
entanglement [29, 30]. From a condensed-matter perspective, the large number of trapped particles with highly-
tunable interparticle interactions can allow the preparation of novel many-body entangled states using global control
fields [31, 32, 33]. From a quantum computing perspective, optically-trapped neutral particles have long coherence
times, and promise the best scalability in comparison with optical, trapped ions, and solid-state architectures [34].

The long-range character of the interaction between trapped polar molecules [35] provides novel mechanisms for
entanglement generation and control that are not possible with atoms. Arrays of polar molecules can be prepared
in optical lattices with full control over the translational, vibrational, rotational and hyperfine degrees of freedom
[36, 37, 38, 39]. Coherent dipole-exchange interactions between polar molecules in microwave-driven 3D optical
lattices [40, 41] have recently been observed [42]. These experiments pave the way toward the preparation of exotic
many-body quantum states with long-range correlations [33], including topologically-protected dipolar quantum
memories [43, 44, 45, 46].

Local control of dipolar arrays can also allow the implementation of universal quantum logic within the gate
model [47]. Two-qubit gates can be implemented spectroscopically using global microwave control pulses, where
single-site spectral resolution is provided by an inhomogeneous dc electric field [48, 49, 50, 51, 52]. In this approach
the unwanted interactions between qubits can only be suppressed using dynamical decoupling pulses in analogy with
NMR architectures [53]. The ability to turn on and off the interaction between selected qubits within a range of sites
would greatly simplify the implementation. This approach is taken in Refs. [54, 55, 56] by considering conditional
transitions between weakly and strongly-interacting molecular states in dc electric fields, effectively implementing
“switchable” dipoles. Static electric fields, however, induce dipolar interactions throughout the molecular array that
can still introduce undesired two-body phase evolution between qubits that are not participating in the conditional
gate. In Ref. [57], an atom-molecule hybrid strategy that solves this issue has been proposed.

In this work, we introduce an infrared control scheme to manipulate entanglement between an arbitrary pair
of open-shell polar molecules within a range of optical lattice sites. Quantum information is encoded in the
spin-rotation degrees of freedom of the molecules in the presence of a bias magnetic field. The controlled two-
qubit entangling operation involves the manipulation of local qubit energies using a cw strongly focused near-IR
off-resonant laser beam and a single-qubit Raman coherent population transfer step using mid-IR near-resonant
laser pulses. Under these conditions, the dipole-dipole interaction is activated for a time sufficient to perform
the entangling operation. Reversing the single-qubit control steps suppresses further two-body evolution. Unlike
previous proposals for molecular entanglement creation that employ permanent dipoles in dc electric fields, our
scheme generates a non-interacting molecular ensemble when the driving fields are not present, or are off-resonant
from any rovibrational transition. We analyze the fidelity of the resulting entangling operation as a function of
single-qubit driving parameters. We also discuss how the constructed quantum gates can be used to implement
universal matchgate quantum computation in optical lattices.

The two-qubit gate protocol that we introduce in this article builds only on optical lattice trapping [39] and
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the ability to perform coherent state transfer between rovibrational states in the ground electronic manifold, via
stimulated Raman adiabatic passage (STIRAP) [58]. Both of these are well established techniques. We choose the
logical qubit states |0〉 and |1〉 in the ground vibrational manifold of a 2Σ polar molecule such that the electric
dipole-dipole interaction between molecular qubits is not spin-allowed when the infrared dressing lasers are off. We
achieve this by choosing |0〉 and |1〉 as low-field (spin up) and high-field seeking (spin down) states, respectively,
in a bias magnetic field B ∼ 500 mT. Electric dipolar interactions between qubits is introduced by admixing the
low-field seeking state |0〉 with its high-field seeking partner, conserving the rotational quantum number. This step
involves a STIRAP state transfer using a excited vibrational state as an intermediate state (see the illustration in
Fig. 2). The STIRAP step effectively carries out the unitary transformation |0〉 → |0′〉, which is only weakly spin-
allowed by the spin-rotation interaction in the molecular frame. However complete state transfer can be achieved
using moderately strong infrared laser pulses over tens to hundreds of nanoseconds. The strong electric dipole-dipole
interaction between qubits in states |0′〉 and |1〉 leads to the desired two-qubit gate evolution in a timescale of tens of
microseconds. Once the gate is performed, the STIRAP sequence is reversed, performing the inverse transformation
|0′〉 → |0〉, therefore preventing further undesired two-qubit evolution. Spatial selectivity of the gate is achieved by
introducing an additional strongly-focused far-detuned laser that makes the STIRAP state transfer step efficient
only for selected sites via the ac-Stark shift induced by the far-detuned beam. In the body of the paper we show
that this two-color control scheme can be used to engineer effective spin Hamiltonians of the form

H =
∑
i

biZi +
∑
ij

JijXiXj +Kij YiYj + Lij (XiYj + YiXj) +MijZiZj ,

where the effective site energy bi can be made to vanish and the dipolar couplings (J,K,L,M) have a high degree
of tunability. {X,Y, Z} is the set of Pauli matrices. For bi = 0 and Mij = 0, the system Hamiltonian can be used to
implement the so-called matchgates [59], which can lead to universal quantum computing via two-qubit interactions
only [60, 61].

The remainder of this paper is organized as follows. In Section 2 we explain the molecular entanglement control
scheme and the parameters that characterize the fidelity of the resulting two-qubit operation. In Section 3 we show
how the two-body control scheme implements a set of two-qubit unitaries that can be used to perform universal
quantum computing in optical lattices. In Section 4 we discuss realistic conditions for physical implementation of
the proposed scheme and summarize our findings.

2. IR-dressed entanglement generation with two-qubit selectivity

We are interested in implementing two-qubit entangling unitaries with trapped polar molecules. Consider an
ensemble of 2Σ polar diatomic molecules (one unpaired valence electron) in their rovibrational ground state, each
individually trapped in a site of an optical lattice in the Mott insulator phase. We assume the molecules are
individually trapped in a one-dimensional lattice (along the x-axis), which can be prepared from a 3D optical
lattice by controlling the trapping wavelength along the y and z-axes [39, 42]. We choose 2Σ ground electronic
states in for simplicity, but the method described here can be readily generalized for polar molecules with two or
more unpaired electrons, including larger polyatomic species. A homogeneous magnetic field allows static control
over the valence electron. In addition to the standing-wave weak off-resonant laser that generates the optical
trapping potential, we make use of an additional strongly-focused linearly-polarized laser beam, far-detuned from
any vibronic resonance, that locally enhances the rotational tensor light-shifts only for a subset of lattice sites. As
discussed below, static electric fields should be avoided. The collective internal states of the array can be described
using the Hamiltonian H =

∑
iHi+

∑
i>j Vij , with two-body terms Vij dominated by the dipole-dipole interaction,

as discussed below, and one-body terms given by [62]

Hi = BeN
2
i + γsrNi · Si + gSµBBŜZi − ULS(ri)Ĉ2,0(θ)⊗ ÎS , (1)
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where Be is the rotational constant, N is the rotational angular momentum operator, S the spin angular momentum,
ŜZ its projection along the quantization axis, and ÎS the identity in spin space. The static magnetic field is B = Bẑ,
gS ≈ 2.0 is the electron g-factor and µB is the Bohr magneton. For the magnetic field strengths considered in this
work, we can ignore the magnetic moment due to the rotation of the nuclei and the hyperfine structure due
to the nuclear spin. The last term in Eq. (1) corresponds to the position-dependent tensor light-shift of order
ULS(ri) = ∆α|E0(ri)|2/4 for N ≥ 1, where ∆α > 0 is the polarizability anisotropy and E0(ri) is the laser field
amplitude seen by the i-th molecule, and N is the rotational angular momentum quantum number. The lightshift
is due to a strong cw linearly polarized far-detuned near-IR laser that is several orders of magnitude more intense
than the off-resonant trapping light. The spatial dependence of the lightshift results from the ability to focus the
strong field so that it interacts with only a subset of the lattice sites when propagating perpendicular to the lattice
axis, or with the entire array when propagating along the lattice axis. We assume the strong laser polarization is
collinear with the magnetic field. The strong laser couples to the rotation via coherent Raman scattering. If we
choose ULS � Be, the tensor lightshift operator Ĉ2,0(θ) = (3 cos2 θ − 1)/2 does not couple rotational states with
different values of N . The spin-rotation interation γsrN ·S mixes rotational and spin projections for N ≥ 1. At the
magnetic fields considered here, γsr/gSµBB � 1, therefore admixing between the electron spin and the rotational
motion of the nuclei is only perturbative. The molecular constants Be, γsr, and ∆α depend on the vibrational state
of the molecule, although the dependence can be weak for the lowest two vibrational states (v = 0 and v = 1)
considered in this work [63]. In Ref. [43], 2Σ polar molecules in the regime γsr/gSµBB � 1 were used for the
implementation of tunable spin-lattice models. There the dipole-dipole interaction combined with the spin-rotation
interaction introduced an effective spin-spin coupling between molecules in the rovibrational manifold N = 0, via
global microwave dressing in a weak dc electric field. In contrast, we use site-local infrared driving within the N = 0
manifold to induce dipolar exchange processes involving the N = 1 manifold, as explained below.

In Eq. (1) we have ignored the quasi-harmonic center-of-mass oscillation of molecules in each lattice site. Such
motion corresponds to a phonon bath for the internal state dynamics [40, 64], but the coupling of the collective
rotational states with this phonon bath can be made perturbatively weak by increasing the lattice trap frequency.
In this regime we can consider molecules to be fixed at the location of the trapping potential minima, and consider
the internal state dynamics only.

We want to implement spin-rotation qubits with a locally-tunable effective bias field. It would be useful to be
able to tune the qubit gap to zero in order to suppress the one-qubit phase evolution in the implementation
of two-qubit gates, which otherwise would have to be eliminated with additional one-qubit operations. We
achieve this by exploiting the unique level structure of open-shell molecules. In Fig. 1 we show the Zeeman
spectrum of the lowest two rotational manifolds of a 2Σ molecule. For moderately strong magnetic fields (less
than 1 Tesla for typical values of Be) the N = 0 and N = 1 rotational manifolds cross, as shown in panel
1a. We choose as our computational basis the ground state |g〉 = |N = 0,MN = 0〉| ↑〉 and the excited state
|e〉 ≡

√
1− a|N = 1,MN = 0〉| ↓〉 −

√
a|N = 1,MN = −1〉| ↑〉, where a = η2/2 + O(η4) and η = γsr/gSµBB0 � 1.

The qubit gap ε ≡ εe − εg in this case can be made to vanish when tuning the magnetic field to the location of the
energy crossing Bcross (see inset 1b). This is a real crossing in the absence of dc electric fields, which would couple
the opposite- parity qubit states to create an avoided crossing. Such parity-breaking fields are always present in
experiments, but as long as the interaction energy Udd = d2/r312 between adjacent qubits is larger than the linear
Stark shift due to stray electric fields, we can consider the crossing to be real and not avoided. For molecules
with dipole moments d ∼ 1 D and lattice site separations r12 ∼ 500 nm, electric fields of strength Edc < d/r312 ∼ 1
mV/cm can be safely ignored. We note that it is possible to suppress stray fields below the mV/cm level in ultracold
experiments [65, 66, 67].

The magnetic field would tune the gap simultaneously for all molecules in the array. The strongly focused
near-infrared laser introduced earlier can then be used to manipulate the position of the energy crossing between
|g〉 and |e〉 locally via the tensor lightshift ULS(ri) in the N = 1 manifold. The energy of the state |g〉 is unaffected
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Figure 1. Zeeman spectrum of a 2Σ molecule in the ground vibrational state (v = 0) in a magnetic field B. The
lowest two rotational manifolds N = 0 and N = 1 are shown. The inset is an expanded view of the squared region
near the crossing between the opposite parity qubit states |g〉 and |e〉. The separation of |e〉 from neighbouring
excited states is on the order of the spin-rotation constant γsr/Be ∼ 10−2. The crossing occurs at the magnetic field
Bcross = 2Be/gsµB . Be is the rotational constant, gs the electron g-factor and µB the Bohr magneton.

by the tensor lightshift operator Ĉ2,0 in the regime ULS � Be. Note that we are ignoring the state-independent
scalar light-shift proportional to the average polarizability (α‖+2α⊥)/3, which lowers the energy of all the rotational
states, without affecting the qubit gap εi. The strong near-infrared laser lowers the energy of the state |e〉, moving
the location of the crossing with |g〉 to lower magnetic fields. Therefore, local tuning of the gap εi(t) can be imple-
mented as follows: (i) tune the global magnetic field below the energy crossing point and keep it fixed throughout the
experiment; (ii) change the location of the crossing point quasi-locally (adjacent sites only) by shifting the energy
of state |e〉 using the strongly focused near-IR off-resonant laser; (iii) refocus the strong laser to manipulate another
pair of qubits. For SrF molecules, for example, the energy crossing occurs at the magnetic field Bcross ≈ 5376.2
G for ULS(ri) = 0. If we apply a lower magnetic field B < Bcross, the gap becomes εe ∼ gSµB |B − Bcross| for
ULS(ri) = 0. A new crossing point is reached when ULS(ri) = U0 for U0 ∼ gSµB |B − Bcross|, making the qubit
gap vanish for those sites that are illuminated by the strong near-IR laser. This is illustrated in Fig. 2a, where we
set εg = 0. For a typical polarizability anisotropy ∆α ∼ 100 a30 [68], an off-resonant near IR laser with intensity
ILS ∼ 102 kW/cm2 is needed to remove a gap εe ∼ 1 MHz. Readily-available cw lasers with power PLS ∼ 1 mW
with a beam waist w0 ∼ 1 µm can readily achieve these required intensities.

The two-body dynamics is dominated by the long-range dipole-dipole interaction V̂ij between molecules in
adjacent sites. In the absence of dc electric or near-resonant microwave fields the permanent molecular dipole
vanishes when averaged over the rotational motion, but the rotationally-averaged transition dipole moments between
remain finite. We want to exploit this fact to avoid uncontrolled interactions resulting from permanent dipoles.
Undesired interactions between molecules need to be compensated using multiple microwave pulses, which increases
the complexity of the implementation. Below we show that it is possible to introduce entangling two-body
dynamics on demand between neareast neighbours or next-nearest neighbours only, without perturbing the rest
of the molecules in the array. The electric dipole-dipole interaction operator can be written as

V̂ij = Udd(Θ)D̂i
0D̂

j
0 (2)
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(a)

(b)

Figure 2. Level scheme used for infrared dressing. (a) Schematic level diagram for the subspace {|g′〉, |g〉, |e〉, |f〉} as
a function of the tensor lightshift ULS. For ULS = 0, the energies are given by the Zeeman spectrum in Fig. 1. The
two ground states |g〉 and |g′〉 are coupled to the vibrationally excited state |f〉. The laser coupling is characterized
by the Rabi frequencies {Ωp,Ωs} and detunings {∆p,∆s}. The state |e〉 has a tunable gap εe from state |g〉 and is
not coupled to |f〉 by the dressing fields. States |e〉 and |g〉 become degenerate when ULS = U0.(b) For ULS = U0,
the state |e〉 is degenerate with the dark-state |D〉 = α1|g〉 + α2|g′〉, forming a two-level subspace in which dipole
exchange processes occur at the rate J . Bright states |B±〉 involving the excited state |f〉 are separated from the
{|D〉, |e〉} subspace by a gap Ω̃� J .

where Udd(Θ) = (d2/r3ij)(1 − 3 cos2 Θ), rij = |ri − rj | is the intermolecular distance, d is the body-frame dipole
moment of the molecule, Θ is the angle between the quantization axis and the intermolecular separation vector
rij , and D̂i

q is the dimensionless electric dipole operator in spherical coordinates (q = 0,±1), acting on the i-th

molecule. Additional terms in Vij involving D̂±1 are strongly suppressed under the dressing conditions described
below (see Appendix A).

Even when the qubit gap εe can be made to vanish, thus eliminating one-body phase evolution, there is
effectively no dipole-dipole interaction in the {|g〉, |e〉} subspace because the interaction energy Jij ∝ 〈e|D̂q|g〉2 ∼
O(η2) is only weakly spin-allowed by the spin-rotation interaction (η � 1). In order to initiate the interaction
between molecules, we use stimulated Raman adiabatic passage (STIRAP) [58] to create a superposition of the
state |g〉 = |N = 0,MN = 0〉| ↑〉 with its high-field-seeking partner |g′〉 = |N = 0,MN = 0〉| ↓〉 within the ground
vibrational manifold v = 0. Specifically, we establish the three-level Λ system in Fig. 2a by coupling |g〉 and |g′〉
with a common low-field seeking intermediate state |f〉 =

√
1− b|N = 1,MN = −1〉| ↑〉 +

√
b|N = 1,MN = 0〉| ↓〉

in the first excited vibrational state v = 1, where b = η′2 +O(η′4)� 1. The dimensionless spin-rotation parameter
is η′ = γ′sr/gSµBB, where γ′sr is the spin-rotation constant in v = 1. Typically |η − η′|/η � 1 due to the weak
vibrational dependence of the molecular constants for low vibrational quantum numbers.
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The laser coupling scheme is illustrated in Fig. 2a. A left-circularly polarized field, with frequency ωp in the
mid-infrared, couples near-resonantly the states |g〉 and |f〉, which have approximately the same spin projection,
but opposite parity. A linearly polarized field with frequency ωs couples the state |g′〉 with the high-field-seeking
component of |f〉. The driven one-body effective Hamiltonian in the rotating frame becomes

Hi = εe(t)|e〉〈e|+ ∆p(t)|f〉〈f |+ [∆p(t)−∆s(t)]|g′〉〈g′|+ Ωp(t)|f〉〈g|+ Ωs(t)|f〉〈g′|+ H.c., (3)

where ∆p(t) = εf (t)−ωp and ∆s = εf (t)+ε′g−ωs are the associated one-photon detunings. 2Ωp(t) = 〈f |d·ep|g〉Ep(t)
and 2Ωs(t) = 〈f |d · es|g′〉Es(t) are the Rabi frequencies. The transition |g′〉 ↔ |f〉 is only weakly dipole-allowed
by the spin-rotation interaction in |f〉. However, the intensity of the mid-IR driving lasers can be chosen such
that the Rabi frequencies Ωs(t) and Ωp(t) are of comparable magnitude, within the limits of the rotating-wave
approximation. The energies εe(t) and εf (t) already take into account tensor light-shifts and Zeeman shifts.

Under two-photon resonance ∆p = ∆s, the eigenstates of Eq. (3) include a zero-energy state |D〉 =
cosα(t)|g〉 − sinα(t)|g′〉 and the states |B±〉 = (1/

√
2)(sinα(t)|g〉 ± |f〉 + cosα(t)|g′〉), with quasi-energies

2ε± = ∆p ±
√

∆2
p + Ω2

p + Ω2
s . The mixing angle is α(t) = tan−1[Ωp(t)/Ωs(t)], where for now we take the Rabi

frequencies to be real for simplicity. For molecules in the low-field-seeking ground state |g〉 at some initial time
ti, we can write the state vector |Ψi(ti)〉 = |D〉 with α(ti) = 0 for Ωs 6= 0. Following the principles of adiabatic
passage [58], one can prepare the ground-state superposition |D(t)〉 with α(t) 6= 0 by adiabatically tuning the ratio
Ωp(t)/Ωs(t). Adiabaticity is ensured for driving pulses with large area [58, 69].

The infrared-dressed two-body interaction in the rotating frame can be obtained by expanding the dipole-dipole
interaction operator V̂ij in the eigenbasis {|e〉, |D〉, |B+〉, |B−〉}⊗2. We now assume one and two-photon resonant
driving (∆p = ∆s = 0) for simplicity, but general expressions for ∆p 6= 0 are straightforward to obtain. Parity
conservation of the single-particle bare states restricts the number of non-vanishing interaction matrix elements.
We are interested in the two-body dynamics when the energy gap εe � |ε±|. In this regime, energetically allowed
dipole-dipole transitions are dominated by

V̂ij = Jij {|eiej〉〈DiDj |+ |eiDj〉〈Diej |+ H.c.} (4)

where Jij ≡ (1/3)(d2/r3ij)(1− 3 cos2 Θ)(1− η2)(1− δ2), where η � 1 and δ = |π/2−α| � 1. This expression for V̂ij
is valid for a small spin admixture of the states |e〉 and |f〉 and near complete stimulated Raman adiabatic passage
(STIRAP) from |g〉 to |g′〉 (see Appendix A for details). Within these constraints, the two-body interaction in the
rotating frame of the driving mid-IR fields, together with the one-body term give the effective Hamiltonian

H =
∑
i

εiB
†
iBi +

∑
ij

Jij

(
B†i +Bi

)(
B†j +Bj

)
=
∑
i

hiZi +
∑
i

JijXiXj (5)

where B†i = |ei〉〈Di| creates an excitation in site i. In the second line we have used the transformation

B†i = (Xi + iYi)/2 and B†iBi = (1 + Zi)/2, where {Xi, Yi, Zi} are Pauli matrices acting on spin i, and ignored the
constant shift E =

∑
i εi/2. The ZXX transverse Ising model in Eq. (5) with effective magnetic field hi = εe/2 is

widely used to study quantum-phase transitions and non-equilibrium many-body entanglement dynamics [9].
The ability to engineer the ZXX transverse Ising model in the rotating frame of the driving lasers allows us to

implement two-qubit entangling operations as follows:

(i) Prepare all molecular qubits in their low-field seeking ground states |g〉. Choose the magnetic field B < Bcross

below but close to the position of the energy crossing in Fig. 1. This initialization step is done at the begining
of the computation and sets the qubit gap εi 6= 0, for all i.
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Figure 3. IR-dressed two-qubit gate in the rotating frame. (a) Raman pulse sequence with Stokes pulse Ωs(t)
preceeding the Pump pulse Ωp(t). At time t0 the mixing angle α0 with sinα0 = 0.995 is established. The pulse
intensities are then kept constant for a time interval τe = π/4J . At time t1 the pulse sequence is reversed to return
the population to the orginal computational subspace {|g〉, |e〉}⊗2. (b) Two-qubit state evolution in the subspace
{|g〉, |e〉, |f〉, |g′〉}⊗2, associated with the pulse profile in panel (a), for the input state |g1g2〉. The pulse sequence
performs an almost complete population transfer |g〉 → |g′〉 at time t0. The dipole-dipole interaction between
molecules performs the gate U12(t) = exp[−iJX1X2t], populating the state |e1e2〉. At time t1 the inverse mapping
|g′〉 → |g〉 is performed, leading to the output state U12(τe)|g1g2〉. The gate fidelity is Fgg ≡ |〈Φgg |U(τe)|gg〉|, with

the ideal output |Φgg〉 = (|g1g2〉 − i|e1e2〉)/
√

2. Fgg ≈ 0.99 in this example. tg = tf − ti is the total gate time,

J = 0.02T−1
0 is the interaction energy and Xi is a Pauli operator. The qubit energy splitting ε = εe − εg is zero

during the gate operation.

(ii) At time ti, eliminate the qubit gap for a chosen pair of molecules using a strongly focused near-IR off-resonant
laser field, i.e., εi = εj = 0, with |i− j| ≤ 2,

(iii) The mid-IR dressing fields Ωp(t) and Ωs(t) resonantly perform the STIRAP mapping |g〉 → |D〉 only for
qubits i and j. At time t0, establish the mixing angle α0 ≡ arctan[Ωp(t0)/Ωs(t0)] = π/2− δ, with δ � 1.

(iv) Keep the strong off-resonant laser on for a time τe ≡ t− t0 = π/4J . In this time interval, the XX interaction
implements the maximally entangling gate U(τe) = e−i(π/4)XiXi+1 .

(v) At time t1 = t0 + te, reverse the STIRAP pulse sequence to perform the mapping |D〉 → |g〉 back into the
original computational basis.

(vi) At time tf , restore the original qubit gap ε > 0 for qubits i and j, by turning off the strongly-focused near-IR
laser. The total gate time is tg = tf − ti.

In Fig. 3 we illustrate the scheme in steps (i)-(vi) using the input state |gigj〉 as an example. We find that
other inputs give analogous results. The upper panel shows the pulse profile of the driving lasers. For the STIRAP
sequence we use delayed Gaussian pulses Ωp(t) = Ω0e−(t−τp)

2/2T 2
0 and Ωs(t) = Ω0e−(t−τs)

2/2T 2
0 , centered at τp and
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τs, respectively (see Fig. 3a). We assume the pulses have the same peak Rabi frequency Ω0 and pulse width T0.
We take Ω0 � 1/T0 to ensure the state |g〉 evolves into the adiabatic eigenstate |D〉, suppressing non-adiabatic
couplings to the states |B±〉 [58, 69]. The state transfer between |DiDj〉 and |eiej〉 during τe = π/4J is shown in
Fig 3b, where we use J = 0.02T−10 . At time t1 the molecular pair becomes maximally-entangled in the rotating
frame. The STIRAP pulse sequence is then reversed, preserving adiabaticity, in order to return the population to
the original computational basis {|g〉, |e〉}. Non-adiabatic couplings between field-dressed states can move a small
amount of population outside the computational basis at the end of the gate sequence. This can affect the overall
fidelity of the operation. For the example in Fig. 3, the fidelity is F ≈ 0.996 both in the rotating-frame (at time
t1) and in the computational basis (at time tf ). Non-adiabatic couplings can be suppressed by properly designing
the laser pulse sequence. The timescale of the complete gate protocol is limited by the dipole-dipole interaction J ,
since short pulses with T0 � ~/J can always be chosen consistent with the adiabatic restriction by increasing Ω0,
so that the pulse area remains large. We note that a Raman pulse sequence analogous to the one in Fig. 3a has
been demonstrated using microwave fields to perform gates in trapped ion chains [70].

The robustness of adiabatic population transfer techniques with respect to laser parameters is well-known
[58, 69]. In Fig. 4 we characterize the fidelity of the gate U(π/4J) in the rotating frame of the Raman driving with
respect to the dimensionless parameters (∆pΩ−10 ,∆sΩ

−1
0 , τΩ0, T0Ω0), where for simplicity we take τp = −τs = τ/2.

We define the rotating frame fidelity Fab(t) = |〈Φab|Ψ(t)〉|, where the target state is |Φab〉 = U(π/4J)|ab〉 with
{a, b} = {D, e}, and Ψ(t) is the evolved state in the rotating frame. Figure 4 shows the dependence of the fidelity
FDD with the two-photon detuning (∆p−∆s)/Ω0 and the sum of detunings (∆p + ∆s)/Ω0. We use the input state
|DD〉, prepared at time t0 by the STIRAP pulses, such that sinα0 ≈ 0.995. Analogous results are obtained for
other inputs. For fixed pulsewidth T0 = 20/Ω0 and τ = 40/Ω0, we obtain Fgg > 99% for a wide range of values
inside the band |(∆p − ∆s)|/Ω0 ≤ 0.01, as shown in Fig. 4a. The two-photon resonance condition is essential to
establish the so-called dark state |D〉 in the rotating-frame, which makes Fab strongly dependent on the relative
detuning of the driving lasers. Note that for two-photon detunings outside the central band with FDD > 0.9 in
panel 4a, the fidelity FDD quickly drops toward the value FDD = 1/

√
2, which corresponds to evolution of the input

state |DD〉 under the identity, i.e., U(t) = Î, without generation of entanglement. In Fig. 4b we show the fidelity
Fgg under one and two-photon resonance ∆p = 0 and ∆s = 0, as a function of the dimensionless pulse delay τΩ0

and width T0Ω0. Again we find Fgg > 99% for a wide range of parameters. Fidelities below FDD = 1/
√

2 shown
in panel 4b correspond to non-overlapping pulses, for which a significant fraction of the evolved state |Ψ(t)〉 goes
outside the {|D〉, |e〉} subspace, mostly into the state |f〉 = (|B+〉 − |B−〉)/

√
2. For overlapping pulses, both τ and

T0 affect the overlap of the STIRAP pulses, which controls the ratio Ωp/Ωs. The assumed two-photon resonance
condition ensures that the state |D〉 is prepared, but the ratio Ωp(t)/Ωs(t) determines the mixing angle α. For
|α − π/2| ∼ 1 dipole-dipole couplings involving |B±〉 are not suppressed. These additional interaction channels
move population outside the {|D〉, |e〉} qubit subspace, reducing the gate fidelity. The fidelity plots in Fig. 4 also
describe the overal gate fidelity in the computational space Fgg, provided the state transfer step |D〉 → |g〉 is efficient.

Up to now we have restricted our discussion to the implementation of the ZXX Ising model in Eq. (5)
and its associated two-qubit quantum gate. This limitation comes from our choice of vanishing relative phase
β = φp − φs between the Raman lasers Ωp = |Ωp|eiφp and Ωs = |Ωs|eiφs . However, the relative phase β can
be controlled experimentally. For β 6= 0 the dark-state is |D〉 = cosα|g〉 − e−iβ sinα |g′〉, which in the limit
α = π/2 − δ gives the electric dipole operator expansion D̂0 = {d′eD|e〉〈D|+ d′De|D〉〈e|+ H.c} (see Eq. A.4),
with d′eD = − sinα e−iβdeg′ = d′∗De. The complex phase of d′eD ≡ A + iB, with A = − sinα cosβdeg′ and
B = − sinα sinβdeg′ , is invariant under a global phase rotation in the subspace |D〉 → |D〉eiβ and |e〉 → |e〉eiβ . The

dipole operator can thus be written as D̂0 = AX −B Y and from Eq. (2) we then obtain the expanded interaction
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Figure 4. Gate fidelity F in the rotating frame as a function of the infrared driving pulse parameters. (a)
Fidelity Fab ≡ |〈Φab|U(τe)|ab〉| versus two-photon detuning (∆p −∆s)/Ω0 and (∆p + ∆s)/Ω0, for fixed pulse delay
τ = 40/Ω0 and with T = 20/Ω0 (∆p and ∆s are defined in Fig. 2). The input state is |ab〉 = |DD〉, with with
|D〉 = cos θ|g〉 − sin θ|g′〉 and sin θ ≈ 0.995. (b) Fidelity FDD versus pulse delay τΩ0 and width TΩ0, under one
and two-photon resonance ∆p = ∆s = 0. The two-qubit gate U(τe) with τe = π/4J entangles qubits in the rotating

frame. The ideal output state is |ΦDD〉 = (|D1D2〉 − i|e1e2〉)/
√

2. Ω0 is the peak Rabi frequency of the pulses,
which are taken Gaussian with equal width.

term

V̂i,j = Jij XiXj +Kij YiYj + Lij (XiYj + YiXj) , (6)

where J = A2Udd(Θ), K = B2Udd(Θ), and L = −ABUdd(Θ).
For some applications it might be interesting to have an interaction term of the form Uij |eiej〉〈eiej |. This

type of interaction results from the permanent electric dipole moment in state |e〉, which we introduce by driving
the transition |e〉 → |e′〉 (not shown in Fig. 2) with a near-resonant cw microwave field characterized by a
constant Rabi frequency Ωµ and the time-dependent detuning ∆µ(t). We choose the state |e′〉 =

√
1− c|v =

0;N = 2,MN = 0〉| ↓〉 +
√
c|v = 0;N = 2,MN = −1〉| ↑〉, with c = 3η2/2 and η = γsr/gsµBB � 1. The

microwave frequency is chosen such that it is near resonance with ∆E = εe′ − εe only in the presence of the
strong near-IR laser field that eliminates the one-body term in Eq. (5). The microwave field is otherwise far-
detuned from any rotational transition with ∆µ � 0, and only induces a small lightshift of order Ω2

µ/|∆µ| to the
rotational levels, which can be made much smaller than the spin-rotation constant γsr, and therefore negligible,
by adjusting the ratio Ωµ/|∆µ|. As the strong near-IR laser changes the detuning ∆µ(t), the two-level system
{|e〉, |e′〉} undergoes chirped adiabatic passage [69]. This coherent state transfer can be understood using the
adiabatic eigenstates of the RWA Hamiltonian in the rotating frame of the microwave field. For an adiabatic change
of the detuning satisfying d∆µ(t)/dt� 2[∆µ(t)2 + Ω2

µ]3/2/Ωµ, the adiabatic state |e−(t)〉 = cos θ(t)|e〉 − sin θ(t)|e′〉
with tan[2θ(t)] = Ωµ/∆µ(t), evolves from θ(0) = 0 for ∆µ → −∞ to θ(t) → π/4 for as ∆µ → 0, thus creating
a stationary superposition of |e〉 and |e′〉 in the rotating frame. For θ(t) 6= 0, the adiabatic state |e−〉 acquires
a dipole moment de− ≡ 〈e−|D̂0|e−〉 = −2 cos θ sin θdee′ , where dee′ ≈ 2

√
(1− η2)/15. The interaction between

adjacent permanent dipoles in different lattice sites will then lead to an interaction term of the form

Vij =
∑
ij

UijB̂
†
i B̂iB̂

†
j B̂j =

1

4

∑
ij

Uij (1 + 2Zi) +
∑
ij

MijZiZj (7)
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where Uij = (d2/r3ij)(1 − 3 cos2 Θ)(de−)2 and Mij = Uij/4. Ignoring constant energy shifts, Eqs. (5), (6), and (7)
may be summarized by the generalized rotating-frame spin Hamiltonian

H =
∑
i

biZi +
∑
ij

JijXiXj +Kij YiYj + Lij (XiYj + YiXj) +MijZiZj , (8)

acting on the subspace {|D〉, |e−〉}⊗2. The local field is bi = hi +
∑
j Uij/2, where hi = εe/2. The parameter space

(J,K,L,M) is constrained by J +K ≤ Udd(Θ), M ≤ Udd(Θ)/4 and L2 = JK, with Udd(Θ) = d2/r312(1− 3 cos2 Θ).
We note that in Ref. [71], closed-shell polar molecules in moderately strong dc electric fields were used to implement
effective spin-spin couplings of the form in Eq. (8), plus additional density-dependent terms, via global microwave
dressing. In such a system, each parameter can in principle become independently tunable by increasing the number
of microwave frequencies used to admix rotational states. In contrast, we use a two-color infrared dressing scheme,
which is the simplest scheme that leads to Eq. (6). Increasing the number of frequencies can allow further interaction
terms, as shown in Eq. (7) for ZZ couplings. Introducing additional infrared and microwave frequencies can thus
decrease the number of constraints on the parameters (J,K,L,M).

The local phase evolution can be completely suppressed by making bi = 0, for all sites, in Eq. (8). This
condition is achieved when εe = −

∑
j Uij . For Uij > 0, the magnetic field field has to be tuned past the avoided

crossing in Fig. 1 in order to make εe < 0, since we have set εg = 0. Note that in the derivation of Eq. (8) we
have assumed that the Rabi frequency Ωµ is smaller than the coupling constants Jij , Kij , and Lij so that we can
consider the adiabatic state |e−〉 to remain quasi-degenerate with the dark state |D〉.

3. Universal matchgate quantum computing in optical lattices

It is well known that universal quantum computation can be implemented using a maximally-entangling two-qubit
gates, most commonly CNOT and CZ, in addition to a minimal set one-qubit rotations [5]. In Appendix B we
show how to implement CZ and CNOT gates using the two-qubit unitary U = e−iHt with H being the ZXX Ising
model in Eq. (5) for hi = 0. Single qubit unitaries in the subspace {|gi〉, |ei〉} of the i-th qubit can be implemented
without using mid-IR dressing fields by tuning the local bias field such that |hi − hj | > ε for j 6= i, and applying
radiofrequency pulses in resonance with hi that perform arbitrary rotations, in analogy with NMR architectures.
The pulse linewidth should satisfy γp � ε. Site resolution of the qubit gap hi can be achieved using a strongly-
focused near-IR laser. Although this this approach has been already implemented for atomic Mott insulators [72],
we are interested in quantum information processing via two-qubit gates only. This goal can be achieved with
the matchgate model of quantum computation, which is universal provided that gates may be performed between
non-nearest neighbor qubits [59, 60, 61].

We show here that the physics of interacting molecular transition dipoles can allow for universal matchgate
quantum computing in optical lattices. Matchgates UAB [59] are two-qubit unitaries of the form

UAB =


a11 0 0 a12
0 b11 b12 0
0 b21 b22 0
a21 0 0 a22

 , (9)

where the one-qubit unitaries A, with elements aij , and B, with elements bij , belong to SU(2) with det(A) = det(B).
While quantum computation with matchgates between nearest neighbors in a 1D qubit chain is still efficiently
simulable by a classical computer, this is not the case when matchgates between non-nearest neighbor qubits are
allowed [59, 60, 61, 73]. We can therefore exploit the long-range nature of the dipole-dipole interaction to realize
quantum computations on a 1D chain of dipolar molecules that can not be efficiently simulated by classical means.
In Ref. [61] was shown that a universal circuit can be constructed using any set of matchgates acting on nearest-
neighbours and next-nearest-neighbour qubits. In that work, a demonstration was made for a minimum set of
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nearest-neighbour matchgates UAB plus SWAP gates: the latter are non-entangling but have the ability to introduce
effective long-range interactions between qubits and thus this suffices to ensure universal and non-trivial quantum
computation. The price for not using single qubit addressing in the matchgate model of quantum computation
is the need to encode logical qubits using two or more physical qubits. This is detrimental for the scalability of
matchgate quantum computing using currently developed architectures (trapped-ion, solid state, optical), which
have a modest number of physical qubits N ∼ 10 [34]. Nevertheless, for a 1D optical lattice with N ∼ 102

physical qubits, encoding a logical qubit using four physical qubits and next-nearest neighbour interactions as in
Ref. [61] still gives a processor with a size comparable to current state-of-the-art trapped ion chains [74, 75]. For
effective 2D optical arrays with N 2 physical qubits, the computational size would largely exceed currently available
implementations based on other physical systems, even with multi-qubit encoding.

For the polar molecule system described in Sec. 2, the unitary U = e−iHt is of the form in Eq. (9), where H
is given by Eq. (8) with Mij = 0 [60]. The long-range character of the dipole-dipole interaction between molecules
can thus be exploited to ensure universality of the proposed quantum processor under conditions when classical
simulation is inefficient [61]. In Sec. 2 we showed that the dipole-dipole coupling is finite only between the those
sites for which the mid-IR dressing fields perform the STIRAP transfer that prepares the state |D〉. We achieved
spectral site selectivity by applying a strongly-focused off-resonant near-IR laser to shift the rotational levels.
Nearest-neigbour or next-nearest neighbour couplings can thus be implemented by shaping the intensity profile of
the near-IR laser with a resolution on the order of the lattice wavelength λ. Multiple strong beams can also be used.
The alternative to direct next-nearest-neighbour couplings is to use a SWAP gate to move non-adjacent (logical)
qubits into adjacent locations in the lattice. Performing a SWAP gate using H from Eq. (8), keeping particles
fixed in space, requires single-site addressability [5]. Alternatively, physically swapping particles among two lattice
sites can effectively implement a SWAP gate, as demonstrated for atoms [15]. However, this approach requires
precise control over the motional state of the particles in the state-dependent lattice potential. The operation
involves placing the two particles momentarily in the same lattice site. For molecules, the large number of inelastic
collision channels leading to loss of molecules from the trap can make this step challenging to control. Although
fermionic suppression of inelastic collisions could be useful to overcome this issue [76, 77], the required adiabaticity
of the lattice spatial motion with respect to the lattice trapping period can make the swapping time exceed the
millisecond regime [15]. It might thus be faster and more robust to directly couple next-nearest neighbour qubits
by the long-range dipole-dipole interaction with molecules fixed in space. The associated gate time would be only
eight times slower than for adjacent sites.

4. Discussion of physical implementation

In section 2 we introduced a robust method to engineer the entangling unitary U(t) with two-qubit site resolution.
In our analysis of the gate fidelity in Fig. 4, we assumed unitary evolution within the two-particle subspace
{|g〉, |f〉, |g′〉, |e〉}⊗2. This is only justified if the decoherence rates Γ associated with environmental processes are
smaller than the entanglement rate 1/te ∝ Jij . Decoherence times 1/Γ & 1 ms have been measured for closed-shell
polar molecules in optical lattices [78, 39], resulting from static field fluctuations, incoherent photon scattering
off the trapping fields, and motional effects in state-dependent potentials. In the absence of mid-IR and strong
near-IR lasers, the system described in this work would be subject to decoherence rates of the similar magnitude
as in experiments with close-shell molecules, since the trapping conditions are analogous. The strong far-detuned
near-IR laser field used to manipulate the qubit gap εe (see Fig. 3) can in principle stimulate additional incoherent
scattering events that lead to trap loss. The photon scattering rate can be written as Γsc = Im(α)ILS, where Im(α)
is the imaginary part of the molecular polarizability and ILS is the near-IR light intensity. The lightshift ULS(ri)
of the rotational states is proportional to the real part of the polarizability Re(α), which for alkali-earth halide 2Σ
compounds such as SrF is on the order of 102 a30 [68]. For light far-detuned from any vibronic resonance the ratio
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ρ = Im(α)/Re(α) can be very small. For KRb molecules ρ = 10−7 for λ = 1064 nm light [39], and other polar
molecules have similarly low values for λ ∼ 1 µm [79]. Using Re(α) = 100a30 = 4.6 HzW−1cm2 and rho = 10−7

as representative values, the scattering rate for the laser intensities ILS ∼ 102 kW/cm2 considered in Section 2
gives the decay time 1/Γsc ≈ 20 s. Molecular dipole moments d ∼ 1 D and lattice spacings λ/2 ∼ 500 nm give
dipole-dipole interaction times 1/J ∼ 10 µs. Two-qubit gates thus occur instantaneously in comparison with the
expected photon scattering timescales, introduced by the strong near-IR laser.

The mid-IR dressing fields could also be a source of trap loss if the intensities are high enough to induce
multi-photon vibrational excitation. The peak intensity of the dressing fields is lower-bounded by the approximate
adiabaticity condition Ω0T0 � 1, where T is the pulse length and Ω0 the peak Rabi frequency. Note that since we
require the driving fields to remain constant for the duration of the gate, once the adiabatic state |D〉 is prepared,
the parameter T0 more appropriately characterizes the Gaussian turn-on and turn-off times of the beams. We
require T0 to be much shorter than 1/J , so that the preparation of state |D〉 in Fig. 3 is fast compared with the
two-qubit entanglement time τe = π/4J . For expected interaction times 1/J ∼ 10 µs, we can choose T0 ∼ 100
ns, which requires Ω0 > 10 MHz. Assuming a vibrational transition dipole moment d = 0.1 D, intensities I0 ≈ 50
W/cm2 in the mid-IR spectral region are required to ensure adiabaticity. Weakly-allowed dipole transitions such
as |g′〉 ↔ |f〉 in Fig. 2 are a suppressed by a factor η = γsr/Be, at the magnetic fields considered here, with respect
to electric dipole-allowed transitions such as |g〉 ↔ |f〉, which have near unity spin overlap. However, the required
intensities to drive the |g′〉 ↔ |f〉 transition are only a factor η−2 larger than for |g′〉 ↔ |f〉 in Fig. 3. For SrF
molecules η ∼ 10−2 [68]. High intensity mid-IR pulsed and cw laser pulses are commonly used in spectroscopy [80].
Two-photon excitation to higher vibrational states v > 1 due to the driving fields is strongly suppressed when the
associated two-photon detuning is larger than the laser bandwidth.

Since the entanglement creation step involves a strong off-resonant near-IR field, conservative optical dipole
forces induced by the light beam can in principle perturb the motion of a molecule in its trapping potential,
eventually causing lattice heating. However, the optical forces of the trapping lasers will dominate the motion of
molecules when the spatial intensity inhomogeneity of the strong field is sufficiently small at the position of the
molecule. This effect can be estimated using perturbation theory in 1D. A suddenly applied Gaussian beam at
t = 0 creates a lightshift potential of the form U(x, t) = A0exp[−x2/σ2] for t > 0, where A0 is proportional to
the polarizability and peak field intensity. A molecule initially trapped in the ground state ψ0(x) of a static
harmonic potential V0(x) = mω2

0x
2/2, experiences a dipole force that drives transitions to higher motional

states, that eventually lead to trap loss. Here ω0 is the trapping frequency and m is the molecular mass. To
lowest order, the short-time (ω0t � 1) transition probability to the second vibrational mode ψ2(x) is given by

P2←0(t) = γ (γ − 1)
2
A2

0t
2 where γ = α/(α+ β), α = mω0/~ and β = 1/σ2. Lattice heating is thus suppressed

when γ ≈ 1, which requires a beam spatial width σ much larger than the trap length l0 = (~/mω0)1/2. Otherwise
the heating rate is non-perturbative and the strong beam can remove molecules from their traps. This simple
estimate shows that it should be possible to increase the lattice frequency ω0 and shape the intensity profile of the
strong near-IR laser field in order to satisfy l0/σ � 1, reducing the heating rate. Classically, the dipole force from
the near-IR beam can be negligible in comparison with the lattice trapping force if the strongest inhomogeneity of
the former is pushed to the region in between lattice sites, where no particles are present. Such a beam profile may
be produced using perforated screens with slit dimensions on the order of the lattice wavelength. This qualitative
understanding must be supplemented with more rigorous studies of the heating process, which is subject of future
work.

In this work we have assumed that molecules are fixed at the minimum of their trapping potentials. In reality,
the oscillation of the molecular centers of mass in the strong trapping potential of each optical lattice site will
lead to fluctuations of the dipole-dipole interaction energy. For the ZXX model in Eq. (5) we can thus write
Jij(t) = J0

ij + δJij(t), where J0
ij is the interaction energy for molecules fixed at their potential minima, and δJij(t)

is a stochastic fluctuation due to intermolecular vibrations. Lattice vibrations for molecular optical lattices can be
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described as a phonon bath with tunable spectra and coupling to the rotational degrees of freedom of the molecules
[64, 81]. Therefore, we can take into account the energy fluctuation δJij(t) in the two-qubit gate evolution using a
spin-boson model of the form H = HS +HB +HSB , with system Hamiltonian HS given by Eq. (5) with hi = 0

(valid during gate operation) with a free bath Hamiltonian HB =
∑
k ~ωkâ

†
kâk. By expanding the dipole-dipole

interaction up to quadratic displacements from the trapping minima, the system-bath interaction can be written as

HSB =
∑
k

XiXj

{
λkij

(
âk + â†k

)
+ κkij

(
âk + â†k

)2}
, (10)

where â†k creates a phonon in the k-th normal mode with frequency ωk. In the absence of dc electric fields the
phonon spectrum is dispersionless [64], i.e., ωk = ω0. The anharmonicity of the lattice potential is ignored since we
are interested in the deep lattice regime. The linear and quadratic spin-boson couplings are characterized by the
energy scales

λkij = −3J12

[
l0
aL

]
fkij

(i− j)
|i− j|5

and κkij = 12J12

[
l0
aL

]2
gkij

1

|i− j|5
(11)

where aL is the lattice constant of the array, l0 =
√

~/2mω0 is the oscillator length, ω0 is the trapping frequency,
fkij and gkij are numerical mode-coupling functions bounded by unity. The coupling to phonons can become the
dominant effect when phonon energy ~ω0 is comparable or smaller than Jij [64]. We assume here for simplicity
that J12 < ~ω0, which leads to weak exciton-phonon coupling.

In this weak coupling regime, the system evolution can then be described by a quantum master equation in the
Born-Markov and secular approximations [82]‡ as ρ̇(t) = −(i/~) [HS +HLS, ρ(t)] + D (ρ(t)). Unitary dynamics is
generated by H′S = HS +HLS , where HS is the ZXX model and HLS is a Lamb-shift correction to the dipole-dipole
coupling due to the quadratic spin-boson coupling to first order in κkij . We write the effective system Hamiltonian
as

H′S =

[
Jij +

∑
k

κkij〈(âk + â†k)2〉

]
XiXj , (12)

where the expectation value is taken with respect to phonon bath state ρB . Typically the molecules
would be distributed thermally among the lattice vibrations, so we average over the thermal state ρB =
exp[−βHB ]/Tr{exp[−βHB ]} with β−1 = kBT . kB is the Boltzmann constant and T is the optical lattice
temperature. The lattice temperature T measures the entropy in the occupation of trap states. Preparing the
molecular ensemble in the ground state of the lattice gives T = 0. In order to ensure the ensemble is in the Mott
insulator phase, we take the trap depth (V0 ∼ 10 − 102 µK) as an upper bound on T . For a thermal bath the

expectation value of the linear term 〈(ak + a†k)〉 vanishes and does not contribute to the Lamb shift up to order
(l0/aL)2. Once the lattice temperature is fixed, the static correction to the dipole-dipole energy, i.e., the second
term in the square bracket of Eq. (12), can be taken into account in the gate evolution time. The correction δe
to the entangling time τ ′e = π/4J(1 + δe) due to the Lamb shift is order (l0/aL)2 � 1. For SrF molecules with
mass m = 106.6, trapping frequency ω0 = 2π × 100 kHz, and lattice constant aL = 535 nm, we have δe ∼ 0.01.
This magnitude coincides with the estimate in Ref. [56], which was done for T = 0. We note that gates can be
calibrated with respect to the effective entangling time τ ′e, which remains fixed as long as the temperature of the
lattice remains constant during the computation. Large trapping frequencies ω0/2π > 100 kHz and proper choice
of the spatial configuration of the lasers involved in the gate ensure that the heating due to the recoil momemtum is
negligible. Motional heating due to the spin-boson coupling does not occur in the weak-coupling regime λij � Jij .

Contrary to the static Lamb-shift due to quadratic coupling to phonons, which is straightforward to take into
account in a gate calibration step, the linear coupling term in Eq. (10) can in general lead to dynamical errors

‡ Note that the secular approximation does not allow for coherence transfer [26]
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during gate operation due to pure dephasing in the two-body evolution to second order in λkij . Incoherent gate
dynamics is determined by the pure-dephasing dissipator

D[ρ(t)] = γij

[
XiXjρ(t)XiXj −

1

2
{(XiXj)

2, ρ(t)}
]

(13)

The pure dephasing rate γij is ultimately proportional to the amplitude of the spectral density Jij(ω) of the

phonon bath at ω = 0. The phonon spectral density depends on the bath correlation function 〈B̂ij(τ)B̂ij(0)〉, with

B̂ij =
∑
k λ

k
ij(âk+ â†k). In Appendix C we use a semiclassical stochastic model to approximate this bath correlation

function under the influence of random intensity fluctuations of the trapping laser as

γij(ω) =
1

~2
[n(ω) + 1]

[
J cl
ij (ω)− J cl

ij (−ω)
]
, (14)

where n(ω) = (e~ω/kbT − 1)−1 is the Bose distribution function and

J cl
ij (ω) = λ2ij

(
ω

ω0

)
β

(ω − ω0)2 + β2
, (15)

is the semiclassical spectral density for optical lattice phonons. In Appendix C we show that the broadening
parameter can be written as β = κω2

0 , where the factor κ > 0 is proportional to the strength of the laser intensity
noise. The trapping noise causes damping of the correlation function as 〈Bµν(t)Bµν(0)〉 ∝ e−β|t| cos(ω′t), where

ω′ =
√
ω2
0 − β2. The bath autocorrelation time τc is order β−1. The condition for the Markov approximation to

hold is thus β−1 � h/J12. Spin-lattice relaxation at frequencies ω ∼ J12/~ is not allowed. This follows from the
commutativity of the Lindblad generator in Eq. (13) with the system Hamiltonian in Eq. (12). Note that if the
single-qubit gap hi in Eq. (5) is not zero during gate operation, commutativity is no longer satisfied and relaxation
is allowed with a rate proportional to the spectral density at frequencies ω ∼ Jij/~. Even though pure dephasing is
allowed during gate evolution, it does not contribute to the gate evolution up to second order λij since J cl

ij (ω = 0)
vanishes. Note that this follows from the gapped nature of the phonon spectrum. Acoustic-type phonons would give
Jij(ω = 0) > 0. Matchgates generated by the ZXX Hamiltonian are therefore robust with respect to fluctuations of
the intermolecular distance due to lattice vibrations. More general matchgates generated by the Hamiltonian in Eq.
(8) would in principle carry dynamical errors due to pure dephasing and relaxation. Relaxation follows from the
non-commutativity of the corresponding Lindblad operators with the Hamiltonian. However, the spectral density
of the phonon bath can be manipulated in order to suppress incoherent gate evolution.

5. Conclusion

In this work we have introduced an infrared dressing scheme to implement entangling gates between nearest-
neighbour or next-nearest neighbour open-shell polar molecules in a one-dimensional array. We use 2Σ diatomic
polar molecules for concreteness, but the scheme is also applicable to diatomic molecules with more than one
unpaired valence electron, and polyatomic molecular species. Motivated by recent experimental progress [72],
we introduce lattice site selectivity of the infrared dressing scheme using a strongly-focused far-detuned laser that
manipulates the energy gap of selected qubits. We choose the molecular qubit states |g〉 and |e〉 such that the dipole-
dipole interaction between molecules in different sites is negligibly weak in the absence of the infrared driving fields,
due to the low spin overlap of the associated transition dipole moments. The infrared dressing scheme involves
the stimulated Raman adiabatic passage (STIRAP) between the two spin states of the ground rotational manifold
|g〉 and |g′〉, via an intermediate rotational state in the first vibrationally excited level. Such mid-infrared dressing
scheme activates the dipole-dipole interaction between the molecular qubits in selected sites, which we exploit to
perform an entangling gate in the rotating frame of the dressing laser fields. Since dc electric fields are not used in
the scheme, the molecules remain in a highly-entangled non-interacting state when the dressing fields are absent or
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are far-detuned from any rovibrational transition. Once the entangling gate is carried out in the rotating frame of
the driving fields, the STIRAP step is reversed in order to transfer the entanglement to the original computational
basis. We show that the gate time is much faster than the expected decoherence rates, so that the gate fidelity is
limited by the efficiency of the STIRAP steps.

We show that the constructed gate belongs to the space of matchgates [59], which can implement universal
quantum computation in one spatial dimension when allowed to act beyond nearest-neighbours [60, 61]. The
matchgate model of quantum computation can be particularly useful to implement in optical lattices because it
does not require single site addressing. The model requires two-qubit operations only, but encodes one logical qubit
in two or more physical qubits. We then suggest to exploit the long-range character of the dipole-dipole interaction
together with the spatial selectivity inherent in our proposed dressing scheme to implement universal matchgate
quantum computing, which has yet to be realized experimentally. Such a sytem would allow digital quantum
simulations of interacting fermions with Coulomb interactions [60], which are relevant for quantum chemistry [83],
using polar molecules fixed in the sites of an optical lattice.

Apart from the possibility of realizing a universal set of matchgates, the extended spin Hamiltonian that we can
implement (see Eq. (8)) also has an interesting significance from a quantum Hamiltonian complexity perspective
[84]. In general, it is known [85] that for Hamiltonians of the form in Eq. (8) with Kij = Lij = 0 on a 2D square
lattice, the worst-case complexity of finding their ground state is QMA-complete§. More recent results imply that
such Hamiltonians with Lij = Mij = 0 also have the same property [86, 87]. Therefore, the realization of the full
Hamiltonian with all parameters (J,K,L,M) finite, would represent the simplest controllable quantum system that
is hard to simulate even on quantum computers. Moreover, the Hamiltonian mathcalH in Eq. (8) is also sufficient
for universal adiabatic quantum computation [85]. In other words, any quantum circuit could be simulated via
adiabatic evolution using the Hamiltonian in Eq. (8), by employing appropriate circuit-to-Hamiltonian embedding
[85]. This suggests that one could in principle use trapped polar molecules for solving BQP-complete problems‖,
which are the hardest problems that quantum computers can solve.
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Appendix A. Dipole-dipole interaction in the rotating frame

The spherical components of the dimensionless electric dipole tensor D̂q, with q = −1, 0, 1 in the bare basis
{|e〉, |g〉, |f〉, |g′〉} can be decomposed as

D̂q = dg′e|g′〉〈e|+ dg′f |g′〉〈f |+ dgf |g〉〈f |+ dge|g〉〈e|+ H.c., (A.1)

where dg′e = 〈g′|D̂q|e〉 = d∗eg′ , dg′f = 〈g′|D̂q|f〉 = d∗fg′ , dgf = 〈g|D̂q|f〉 = d∗fg, and and dge = 〈g|D̂q|e〉 = d∗eg. Note
that dge and dg′f are only weakly electric dipole-allowed due to the spin-rotation interaction in excited rotational
states. Equation (A.1) also holds in the rotating frame of the Raman driving. Transforming to the rotating-frame
eigenbasis {|e〉, |D〉, |B+〉, |B−〉} gives the dipole operator components

D̂0 = d′eD|e〉〈D|+ d′e+|e〉〈B+|+ d′e−|e〉〈B−|+ d′D−|D〉〈B−|+ dD+|D〉〈B+|+ H.c.

§ QMA is a complexity class that is intended as the quantum analogue of the complexity class NP. QMA-completeness implies that
the problem is hard even on a quantum computer.
‖ BQP is complexity class that can be regarded as the quantum analogue of the complexity class P.
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+ d′+−
{
|B+〉〈B+| − |B−〉〈B−|

}
, (A.2)

D̂1 = dDe|D〉〈e|+ d+e|B+〉〈e|+ d−e|B−〉〈e|+ dD+|D〉〈B+|+ dD−|D〉〈B−|+ H.c.

+ d+−
{
|B+〉〈B+| − |B−〉〈B−|+ |B+〉〈B−|+ |B−〉〈B+|

}
, (A.3)

and D̂−1 = −D̂†1. We define primed dipoles involving |g′〉 as d′eD ≡ −(sinα)d′eg′ , d
′
e+ ≡ (cosα)d′eg′/

√
2 = d′e−,

d′D− = (sinα)d′g′f/
√

2 = −d′D+, and d′+− = (cosα)dg′f . The unprimed dipoles involving |g〉 are dDe ≡ (cosα)dge,

d+e ≡ (sinα)dge/
√

2 = d−e, dD+ ≡ (cosα)dgf/
√

2 = −dD−, and d+− ≡ (sinα)dgf/2. Since the states |B±〉 do not
have well-defined parity, they acquire permanent dipole moments of size |d+− + d′+−|.

The components D̂±1 do not contribute to the two-body dynamics. The matrix element dge =
√
a〈v = 0;N =

0,MN = 0|D̂1|v = 0;N = 1,MN = −1〉 is suppressed by a = η2+O(η4) where η = γsr/gsµBB0 � 1 at the magnetic
fields considered here. Therefore, the matrix elements dDe, and d±e are negligible for all values of the mixing angle
α. For our choice of excited state |f〉, the matrix elements dgf cannot be neglected in general. However, since we
choose δ = π/2− α � 1 the matrix elements dD± ≈ δ dgf/

√
2 are also suppressed. The remaining dipole moment

d+− ≈ (dgf/2)(1− δ2/2) dominates the expansion of D̂±1, however we can ignore couplings that do not involve |D〉
and |e〉 provided the adiabaticity of the one-body state transfer is ensured.

The component D̂0 can also be simplified. The bare matrix element dg′f =
√
b〈v = 0;N = 0MN = 0|D̂0|v =

1;N = 1,MN = 0〉 is suppressed by b � 1 at the magnetic fields we consider. The matrix elements d′+− and d′D±
are therefore negligible for all values of α in comparison with those involving d′eg′ . For δ � 1, the term proportional

to de± ≈ δ d′eg′/
√

2 is also suppressed. The dominant term in the expansion of the dipole operator is thus

D̂0 = d′eD {|e〉〈D|+ |D〉〈e|} . (A.4)

Using the truncated form of the dimless dipole tensor D = D̂0 e0, the dipole-dipole interaction operator can
thus be written as

V̂ij =
d2

r3ij
(1− 3 cos2 Θ)(d′eD)2 {|eiej〉〈DiDj |+ |Diej〉〈eiDj |+ H.c.} , (A.5)

in the rotating-frame eigenbasis. Note that coupling outside the two-level subspace S1 = {|e〉, |D〉} is strongly
suppressed by the small spin admixture in the bare states |e〉 and |f〉, plus the near-complete Raman adiabatic
passage from |g〉 to |g′〉 (|π/2 − α| � 1). Using d′eD = −(sinα)d′eg′ and d′eg′ =

√
(1− η2)/

√
3, we obtain the

interaction energy JDij ≡ (1/3)(d2/r3ij)(1− 3 cos2 Θ)(1− δ2)(1− η2) in Eq. (4).

Appendix B. Two-qubit entangling gates using single-site resolution: CZ and CNOT

The Hamiltonian in Eq. (5) gives the time evolution operator U(t) = exp[−iJ12X1X2t] when hi = 0, i = 1, 2. A
controlled-Z gate can be obtained from U(t) via the circuit

UCZ =
√
−iR(1)

z

(
−π

2

)
R(2)
z

(
−π

2

)
(H1 ⊗H2)U

(
π

4J12

)
(H1 ⊗H2), (B.1)

where Hi = (X + Z)
√

2 and R
(i)
ν (θ) = exp[−i(θ/2)σν ] are the Hadamard and ν-rotation gates acting on qubit

i, with σν = {X,Y, Z}. Single-site addressing has been achieved in optical lattices by tuning the qubit gap with
sub-micron resolution using an off-resonant optical field and then performing the rotation using long-wavelength
radiofrequency or microwave fields [72].

The CNOT gate can then be implemented with the circuit

UCNOT = iR(1)
z (π)R(2)

y

(
−π

2

)
UCZR

(2)
y

(π
2

)
(B.2)

with UCZ given by Eq. (B.1).
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Appendix C. Model spectral density of optical lattice phonons

In this appendix we derive the expression for the transition rate γij(ω) in Eq. (14) using a semiclassical
model for the phonon environment in optical lattices. We use the system-bath interaction operator HSB in
Eq. (10), but keep only the term proportional to λij . The term proportional to κij does not contribute to

the dissipator in Eq. (13) up to order (l0/aL)2. We thus have ĤSB =
∑
k λ

k
ijXiXj

(
âk + â†k

)
and define the time

correlation function Cij(t) = 〈B̂ij(t)B̂ij(0)〉, where the bath operator B̂(t) in the interaction picture is given by

B̂ij(t) =
∑
k λ

k
ij

[
âk(t) + â†k(t)

]
.

The classical vibrational energy of the array is H = 1
2

∑
k

(
Q̇2
k + ω2

kQ
2
k

)
, where Qk =

∑N
j=1 αjk

√
mxj are the

normal modes of vibration defined in terms of the displacements xj from equilibrium and the molecular mass m.

Promoting normal coordinates to quantum operators as Q̂k =
√
~/2ωk

(
âk + â†k

)
allows us to write the semiclassical

bath operator Bcl
ij(t) =

∑
k λ

k
ij

√
2ωk

~ Qcl
k (t). The classical bath correlation function can thus be written as

Ccl(t) =
∑
k

(λkij)
2

(
2ωk
~

)
〈Qk(t)Qk(0)〉cl, (C.1)

where we used the fact that different modes (k′ 6= k) are uncorrelated. The classical bath correlation function is a
real quantity, i.e., C∗cl(t) = Ccl(t).

The quantum bath correlation function (omitting system state indices) is defined as C(τ) = 〈B̂(τ)B̂(0)〉 and
satisfies C∗(t) = C(−t) [82]. The system transition rate is given by γ(ω) = G(ω)/~2 where G(ω) =

∫∞
−∞ dτeiωτC(τ)

is a real positive quantity. Using the detailed balance condition G(−ω) = e−~ω/kbTG(ω), where T is the lattice
temperature associated with a mean phonon number n(ω) = (e~ω/kbT − 1)−1, we write

G(ω) =
2

1− e−~ω/kbT
GA(ω), (C.2)

where GA(ω) =
∫∞
−∞ dτeiωτ Im{C(τ)}. We use this expression to obtain a semiclassical approximation to the

quantum rate γ(ω).
The approximation scheme consists on relating the antisymmetric function GA(ω) to the Fourier transform

Gcl(ω) =
∫∞
−∞ eiωτCcl(τ)dτ of the classical bath correlation function in Eq. (C.1). Following Ref. [88], we use

GA(ω) ≈ (~ω/2kbT )GR(ω), and postulate the semiclassical closure CR(t) = Ccl(t). This procedure is known as the
harmonic approximation. The approximate quantum transition rate is thus given by

γ(ω) =
1

~2
~ω/kbT

1− e~ω/kbT
Gcl(ω). (C.3)

The next step is specific to the system considered here. It involves the evaluation of the correlation function
〈Qk(t)Qk(0)〉cl from the classical equations of motion of a molecule in the optical lattice potential. For simplicity,
we consider the potential to have the harmonic form V (x) = 1

2mω
2
kx

2, where ωk is the frequency of the normal
mode k. The most general form of the mode frequency is ωk = ω0f(k), where ω0 = (2/~)

√
VLER is the trapping

frequency as determined by the lattice depth VL and the recoil energy ER of the molecule. The function f(k)
accounts for the dispersion of the phonon spectrum and is determined by the dipole-dipole interaction between
ground state molecules in different lattice sites [64]. In this work we consider molecules in the absence of static
electric fields, therefore the induced dipole moment vanishes and the phonon spectrum is dispersionless. For any
k, the mode frequency ωk = ω0 thus depends on the trapping laser intensity IL since VL ∝ IL [29, 35]. The laser
intensity noise therefore modulates the phonon frequency ω0 and can lead to heating when the noise amplitude is
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large enough [89, 90]. The motion of a molecule in a fluctuating harmonic potential can be modeled by the equation
of motion (for each k)

Q̈k + ω2
k(t)Qk = 0, (C.4)

where ω2
k = ω2

0 [1 + αξ(t)], and αξ(t) is proportional to the relative intensity noise, i.e, αξ(t) ∝ (IL(t)− 〈I0〉)/〈I0〉.
The equation of motion in Eq. (C.4) is a stochastic differential equation with multiplicative noise, for which

no exact analytical solution exists [91]. Using a cumulant expansion approach, the equation of motion for the
correlation function 〈Q(t)Q(0)〉 can be written as [91]

d2

dt2
〈Q(t)Q(0)〉+ 2β

d

dt
〈Q(t)Q(0)〉+ ω

′2
0 〈Q(t)Q(0)〉 = 0, (C.5)

where β = α2ω2
0c2/4 is an effective noise-induced damping coefficient and ω

′2
0 = ω2

0(1 − α2ω0c1) is an effective
oscillator frequency which includes a noise-induced shift from the deterministic value ω0. Equation (C.5) is valid
for all times provided ατc � 1, where τc is the noise autocorrelation time. The coefficients c1 and c2 are related to
the noise autocorrelation function by

c1 =

∫ ∞
0

〈ξ(t)ξ(t− τ)〉 sin(2ω0τ)dτ (C.6)

c2 =

∫ ∞
0

〈ξ(t)ξ(t− τ)〉[1− cos(2ω0τ)]dτ. (C.7)

The effective damping constant can thus be written as β = (α2ω2
0/8)[S(0)− S(2ω0)], where S(ω) =

∫∞
−∞〈ξ(t)ξ(t−

τ)〉e−iωτdτ is the noise spectral density. The dependence of the damping coefficient on the spectral density at twice
the natural frequency indicates that this is parametric dynamical process that can lead to heating (β < 0) when
S(2ω0) > S(0). Here we assume that the static laser noise is dominant and use β > 0, which is satisfied for trapping
lasers with approximate 1/f noise as in Ref. [89].

The solution to Eq. (C.5) is 〈Q(t)Q(0)〉 = 〈Q2(0)〉e−β|t| cos(ω′t), with ω′ =
√
ω2
0 − β2. We have assumed the

oscillator is underdamped (ω0 > β), and ignored the noise-induced frequency shift (ω′0 = ω0). The mean square
amplitude 〈Q2(0)〉 can be obtained by averaging over initial conditions using Boltzmann statistics. For an ensemble
of identical one-dimensional harmonic oscillators we have 〈Q2(0)〉 = kbT/ω

2
0 . Combining these results we can write

the classical bath correlation function in Eq. (C.1) as

Ccl(t) =
∑
k

(λkij)
2

(
kbT

~ωk

)
e−β|t| cos(ω′kt). (C.8)

By inserting the Fourier transform of Eq. (C.8) into Eq. (C.3) we obtain the semiclassical transition rate

γij(ω) =
1

~2
[n(ω) + 1]

[
Jcl
ij(ω)− Jcl

ij(−ω)
]
, (C.9)

where n(ω) = (e~ω/kbT − 1)−1 is the mean phonon number and we have defined the semiclassical phonon spectral
density

Jcl
ij(ω) =

∑
k

(λkij)
2

(
ω

ωk

)
β

(ω − ω′k)2 + β2
. (C.10)

This approximate expression for J(ω) should be compared with exact phonon spectral density for an ensemble of
free quantum oscillators Jij(ω) = (2π)ω2

∑
k(λkij)

2δ(ω − ωk), which also satisfies Eq. (C.9).
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