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5 ABSTRACT: Metal−organic frameworks (MOFs) have emerged as promising
6 tailor-designed materials for developing next-generation solid-state devices with
7 applications in linear and nonlinear coherent optics. However, the implementation of
8 functional devices is challenged by the notoriously difficult process of growing large
9 MOF single crystals of high optical quality. By controlling the solvothermal synthesis
10 conditions, we succeeded in producing large individual single crystals of the
11 noncentrosymmetric MOF Zn(3-ptz)2 (MIRO-101) with a deformed octahedron
12 habit and surface areas of up to 37 mm2. We measured the UV−vis absorption
13 spectrum of individual Zn(3-ptz)2 single crystals across different lateral incidence
14 planes. Millimeter-sized single crystals have a band gap of Eg = 3.32 eV and exhibit
15 anisotropic absorption in the band-edge region near 350 nm, whereas polycrystalline
16 samples are fully transparent in the same frequency range. Using solid-state density
17 functional theory (DFT), the observed size dependence in the optical anisotropy is
18 correlated with the preferred orientation adopted by pyridyl groups under conditions
19 of slow crystal self-assembly. Our work thus paves the way for the development of optical polarization switches based on metal−
20 organic frameworks.

21 ■ INTRODUCTION

22 Crystal symmetry, electronic structure, and chemical stability
23 are key factors that determine the properties of materials for
24 optical devices such as polarizers,1 mirrors,2 or detectors.3

25 Precise fabrication of optical materials is also key to the
26 development of advanced technology such as entangle-photon
27 sources4,5 and solid-state spin platforms for quantum
28 technology.6,7 In addition, organic polymers are promising
29 optical materials because they are inexpensive,8,9 light-
30 weight,10,11 and moldable.10,12 However, their optical proper-
31 ties often degrade due to low mechanical resistance,
32 inhomogeneity, and temperature sensitivity, limiting their
33 application in precision optical devices such polarimetry and
34 interferometry.13 In contrast, crystalline materials have better
35 performance for these applications. For example, crystal
36 birefringence is essential to amplify and modulate the
37 polarization state of light in wave-plates and Pockels
38 cells.14,15 In many cases, birefringent crystals also exhibits
39 nonlinear responses due to their noncentrosymmetric lattice
40 symmetry, allowing applications such as optical frequency
41 conversion and optical parametric amplifiers.16,17

42 Metal−organic frameworks (MOFs) are crystalline materials
43 made of organic ligands and inorganic metal centers, which
44 have attracted great interest in materials science due to their
45 ability to be tailor-designed for specific applications.18,19 The
46 molecular-level design of MOFs has enabled important

47advances in gas storage,20,21 chemical sensing,22,23 and energy
48storage.24,25 MOFs also have great potential for nonlinear
49optical applications. Uniaxial crystals and noncentrosymmetric
50coordination networks can be constructed from tetrahedral
51coordination geometries using d10 metal ions without inversion
52symmetry.17 The electronic structure of d10 metal ions such as
53Zn2+ and Cd2+ increases the chemical stability and optical
54transparency of MOF crystals, due to their inherent resistance
55to oxidation and the absence of d−d band absorptions in the
56visible range.26,27 Moreover, the presence of donor−acceptor
57(pull−push) type ligands in noncentrosymmetric Cd2+- or
58Zn2+-based MOF structures improves the nonlinear response
59because molecules with large transition dipole moments and
60large differences between permanent dipole moments in the
61ground and excited states increase the second-order nonlinear
62optical susceptibility χ(2).17,28

63The Cambridge Structural Database (CSD) contains
64approximately 3900 noncentrosymmetric uniaxial MOFs
65reported to date.29 However, no detailed optical studies are
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66 available on the characterization of applications-ready optical
67 devices, such as Mueller matrix polarimetry.30 Studies have
68 been limited to the band gap measurements of MOFs and
69 second-harmonic generation (SHG) signals for micrometer-
70 sized MOF samples.17,28 The lack of precise optical character-
71 ization may be due to the notorious difficulty of growing large
72 single-crystal MOFs.31,32 According to the vast MOF literature,
73 only a few reports of single-crystal MOFs grown beyond 1 mm
74 can be found.33−37 Although efforts to understand the
75 dynamics of the self-assembly process in MOFs under
76 solvothermal conditions are underway,38 a general under-
77 standing of this process is still elusive, limiting the available
78 strategies for the growth of single crystals for optical devices.
79 We have recently reported a method to grow large single
80 crystals of the MOF Zn(3-ptz)2.

37 This MOF shows a
81 noncentrosymmetric unit cell, tetrahedral d10 coordination
82 geometry, and tetrazole push−pull ligands [3-ptz is 5-(3-
83 pyridyl)-1H-tetrazolate].39 In this work, we study the
84 absorption of large individual Zn(3-ptz)2 single crystals across
85 different crystal planes and discuss the size dependence of the
86 anisotropy in the absorption spectrum with crystal samples of
87 millimeter dimensions, thus extending previous work on the
88 dependence of MOFs’ electronic properties with size over
89 submicrometer dimensions.40 Finally, we carry out solid-state
90 density functional theory (DFT) calculations to rationalize the
91 relationship between the crystallographic structure and optical
92 response of our large single-crystal samples.

93 ■ METHODS
94 All reactants were purchased from Sigma-Aldrich and utilized
95 without any further purification, except for 3-cyanopyridine,
96 which was sublimed at 60 °C. The Zn(3-ptz)2 crystals were
97 synthesized based on the methodology previously reported.37

98 Large single crystals were obtained from a mixture of
99 Zn(CH3COO)2 (3.26 mmol), 3-cyanopyridine (6.52 mmol),
100 sodium azide (9.78 mmol), and acetic acid (3.26 mmol)
101 dissolved in 14 mL of distilled water in a 50 mL glass bottle
102 with the pH value adjusted to 2.7 using HNO3 (70%). The
103 glass bottle was introduced into a tube furnace at 113 °C for 40
104 h (Nabertherm, model 50-250/11) using a horizontal
105 operation and filling the furnace with alumina bulk fiber. All
106 crystals were filtered immediately after the reaction time was
107 finished and washed using ethanol absolute. The planes of the
108 crystal faces were characterized by indexing in a SMART CCD
109 diffractometer using the orientation matrix. The representation
110 of the planes was done using the software WinXMorph.41,42

111 The crystal size area was characterized by optical microscopy
112 as detailed in ref 37. Single crystals were measured by
113 transmittance in a PerkinElmer Lambda 750S spectropho-
114 tometer in a quartz cell, holding the (1̅01) plane on the bottom
115 of the quartz cell. Powder samples were measured in a quartz
116 holder in the diffuse reflection detector.
117 The simulated absorption spectra were calculated using DFT
118 with PBE-GGA functionals and Grimme dispersion (D3)
119 function correction, as implemented in CASTEP.43−47 The
120 crystal structure of Zn(3-ptz)2 (CSD: 184958)

48 shows a space
121 group of I 4̅2d and a static disorder in which the nitrogen and
122 carbon atoms in the pyridyl group are located at the same
123 atomic position. Cells A and B (space group I4̅) were
124 generated by replacing the superposed atoms by a nitrogen or
125 carbon atom and orienting the position of the nitrogen in the
126 unit cell inward or outward toward the center of the cell,
127 respectively. Both cells A and B present the same cell

128parameters and crystallographic position as Zn(3-ptz)2, and
129both were used in calculations. By comparing single-point
130energy calculations, we determined an optimal k-point mesh of
1312 × 2 × 2 and a cutoff of 1100 eV for optimization and
132absorption calculations. We carried out a two-step optimiza-
133tion procedure for each unit cell: First, only atomic coordinates
134were minimized. Second, both cell parameters and atomic
135coordinates were allowed to be optimized. The optimized
136coordinates and cell parameters were employed for the
137estimation of the absorption spectra (see details in the
138Supporting Information). The simulated polycrystalline
139spectrum was obtained from calculations without a definite
140direction of the electric field (isotropic dielectric tensor
141average). Molecular orbital models were obtained in an all-
142electron single-point calculation using the PBE approxima-
143tion49 to represent the exchange-correlation energy. This
144single-point calculations were based on the DFT framework50

145using the ADF-BAND program.51,52

146■ RESULTS AND DISCUSSION
147Size-Dependent Optical Anisotropy. We studied the
148absorption of the Zn(3-ptz)2 (MIRO-101) single crystals
149across different lateral crystal planes. Typical large-sized crystal
150samples have opposing parallel triangular and hexagonal faces,
151corresponding to the planes (101̅) and (1̅01), respectively, as
152reported in the distorted octahedron habit in ref 37. For
153samples with a surface area of a few square millimeters, we
154measured the absorption spectra of three distinguishable lateral
155faces, holding the plane (1̅01) on the bottom as depicted in
156 f1Figure 1. Regarding the large size of our samples, we were only

157able to index planes of the 5 mm2 crystal by single-crystal X-ray
158diffraction (SXRD), which exhibited crystallographic planes G1
159= {(101), (221)}, G2 = {(02̅1̅), (01̅1̅)}, and G3 = {(021̅),
160(011̅)}. For each position, we plotted its absorption spectrum
161across the lateral planes G1, G2, and G3, where the subscript
162was assigned according to its intensity at 350 nm (Figure 1c).
163In the region below 310 nm, the three lateral planes have the
164same absorption intensity, but an orientation-dependent
165energy band is measured in the range of 335−365 nm. This
166low-energy band in the single crystal presents an energy band
167gap of Eg = 3.32 eV (see Figure 1c, inset), which is
168approximately 0.6 eV lower than the band gap obtained in a
169polycrystalline sample.27 This anisotropic optical response near
170the band edge is expected, given the large birefringence of the
171MIRO-101 crystal lattice.53

Figure 1. Crystal habit of MIRO-101. (a) Top crystal view, displaying
the three distinguishable incidence lateral planes along which the
absorption is measured: G1, G2, and G3. (b) Bottom crystal view. (c)
Single-crystal absorbance on the lateral planes G1, G2, and G3. The
inset shows the measured single-crystal band gap of Eg = 3.32 eV.
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172 In order to understand the lower energy band gap described
173 in Figure 1c, we carried out a systematic study of the size
174 dependence of the band-edge absorption spectrum for MIRO-
175 101. We prepared individual single crystals with top view
176 surface areas in the range of 5−37 mm2, as measured by optical
177 imaging. The crystal size dependence of the absorption

f2 178 spectrum of MIRO-101 is shown in Figure 2a. We recorded

179 the absorbance spectra for crystal samples, varying the size
180 from a micrometer-sized powder sample to individual single
181 crystals with top surface areas of up to 37 mm2. Figure 2a
182 shows that crystals with surface areas of a few square
183 millimeters exhibit a low-energy shoulder that is not present
184 in the powder. The extracted band gap converges to 3.3 eV for
185 the largest samples measured in the millimeter regime (see
186 Figure 1c). In Figure 2b we show the absorbance of G1 and G3
187 and the average absorbance taken from the intensities at 360
188 nm. The intensity of the shoulder increases as long as the
189 crystal size increases. In addition, the difference observed
190 between G1 and G3 at 360 nm shows the anisotropy behavior
191 of MIRO-101, which is about 0.1 units and approximately
192 independent of crystal size.
193 This crystal size dependence of the band gap and anisotropy
194 effects in the absorbance of MIRO-101 can be explained in
195 terms of the relative orientations of the tetrazole ligands in the
196 unit cell during the crystallization process. Under its first
197 reported synthesis conditions,48 Zn(3-ptz)2 was obtained in
198 powder form. SXRD shows that the unit cell of MIRO-101

199exhibits static disorder in which the nitrogen atom of the
200pyridyl group is located at the same position as a carbon atom
201in the pyridine ring, producing two types of pyridyl
202orientations in the unit cell that coexist in a polycrystalline
203sample. We denote these two observed unit cells as A and B.
204 f3We show in Figure 3a that unit cell A has the nitrogen atoms of
205the pyridyl group oriented toward the center of the unit cell
206(red dot). In contrast, the nitrogen atoms of the pyridyl groups
207in unit cell B are oriented outward. Then, we used periodic
208DFT to compute the formation energy, Ef, of the two
209structures. From the minimized total energy of each unit cell,
210we determined that the formation energy of cell A is 0.87 eV
211(20 kcal/mol) lower than the formation energy of cell B (see
212the DFT Methods section in the Supporting Information).
213In Figure 3b the relative orientation of the pyridyl groups in
214unit cell A shows differences in the absorption band in the
215region of 345−365 nm, which coincides with the observed
216band-edge absorption of large single-crystal samples (see
217Figure 1c). Solid-state DFT analysis shows that both cells
218absorb at similar intensities below 320 nm and only unit cell A
219exhibits the absorption band around 360 nm, suggesting that
220the pyridyl groups tend to arrange in an A-like cell orientation
221for larger single crystals. The calculated band gap of MIRO-
222101 assuming unit cell A is Eg = 3.15 eV, which should be
223compared with the 3.32 eV single-crystal band gap from Figure
2241. The simulated absorption spectrum of MIRO-101 assuming
225the more energetic cell B conformation only exhibits the high-
226energy band at 310−320 nm.
227 f4In Figure 4 we show an analysis of the molecular orbitals
228obtained by single-point calculations for the valence band
229(HOMO) and conduction band (LUMO) in the vicinity of the
230Fermi level. The results show differences between the unit cell
231types A and B, which could explain the crystal’s anisotropic
232behavior. Assuming the edge of the lower optical transitions is
233related to the molecular orbitals at the edge of the Fermi level,
234we can appreciate in Figure 4, parts b and c, that the
235calculations of cell A show an inter-pyridyl group transition,
236favoring a large isotropic behavior. Meanwhile, in cell B
237(Figure 4, parts e and f), this type of transition is an intra-
238pyridyl group, lowering the isotropic behavior.
239The orientation of pull−push molecules, such as pyridyl-
240tetrazole, during the self-assembly of molecular crystals in
241solution plays a critical role in the formation lower energy

Figure 2. Size dependence of the band-edge absorption. (a)
Absorbance along the incidence plane G1 for single-crystal samples
of different top surface areas. The powder absorption is shown for
comparison. (b) Normalized absorbance across the lateral planes at
360 nm.

Figure 3. Orientation-dependent absorption bands. (a) The geometry of two orientations of pyridyl groups relative to the center of the unit cell
volume (red dot). The nitrogen atoms of the center pyridyl groups point inward and outward in cells A and B, respectively. Other atoms are
omitted for clarity. (b) DFT absorption spectra for MIRO-101 with unit cells A (black) or B (red). Cell B leads to absorption at the measured band
edge.
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242 bands of excitonic states, primarily due to the relative
243 orientation of the permanent and transition dipole mo-
244 ments.54,55 When synthesis conditions favor high nucleation
245 rates and fast crystal growth, producing small polycrystalline
246 samples, the dynamics of the crystal packing of MIRO-101 is
247 under a kinetic control.37 Our slow crystallization rate
248 conditions suppress the kinetic control of the self-assembly
249 process, producing large single crystals in the most stable
250 thermodynamic state (cell A). Although other cell A-like
251 domains can be produced during the crystallization process in
252 the single crystal (three pyridyl groups oriented inward and
253 one outward), our spectroscopic observations and theoretical
254 calculations support a net microscopic orientation. Additional
255 work is needed to understand the relation between the optical
256 anisotropy of the Zn(3-ptz)2 crystal and the coordination
257 chemistry of the 5-(3-pyridyl)tetrazolate ligand with Zn(II)
258 ions at low pH. We suspect that the relative availability of
259 crystal polymorphs with significantly different optical polar-
260 ization responses is a common feature of highly polar ligands
261 with multiple coordination modes.

262 ■ CONCLUSION

263 We studied the anisotropic absorption of individual large single
264 crystals of the MOF framework Zn(3-ptz)2 (MIRO-101) as a
265 function of crystal size, studying polycrystalline samples in the
266 micrometer regime to single crystals with surface areas of up to
267 37 mm2. Using solid-state DFT calculations, we correlated the
268 relative orientation of the pyridyl-tetrazole ligands in the unit
269 cell with the thermodynamic control during the crystallization
270 process. This microscopic orientation is able to modify the

271band edge in the absorption spectrum, reducing the band gap
272for MIRO-101 from 3.9 eV for micrometer-sized polycrystal-
273line samples to 3.3 eV in millimeter-sized single crystals. Our
274characterization of the anisotropic optical response of a large
275noncentrosymmetric MOF is a significant step forward in the
276development of birefringent MOF crystals for efficient
277polarization modulation and frequency conversion devices.
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