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Abstract

The characterization and manipulation of complex microscopic systems for
applications in science and technology demands to have robust theoretical tools to
guide and help the way we obtain relevant information about them. In particular,
condensed phase physics, which is in a blurry boundary between chemistry and
quantum physics, requires several approximations due the high number of degrees of
freedom present, becoming a great challenge to have a satisfactory balance between
a model with just the necessary features, and hopefully with low computational
requirements. Then, having minimal models to understand the fundamental
physics of complex condensed phases, in organic or inorganic materials, particularly
when subject to confined electromagnetic fields, is a valuable contribution, specially

appreciated in chemical physics and quantum optics protocols.

In this thesis we show an intensive exploration of the capabilities of a nonlinear
mid-infrared semi empirical model for describing the coherent and incoherent
dynamics of anharmonic dipoles coupled to a single mode of a cavity QED. We
find that the intrinsic anharmonicity in the material spectrum is heralded to the
near electric field of a nanoresonator. Depending on the driving intensity ratio
with respect to losses, this mechanism allows for the control and modulation of

the complex phase of an incoming field with respect to the scattered cavity field.

This mechanism promises interesting applications in molecular infrared
nanophotonics, where the intrinsic anharmonicities of the vibrational modes
are well documented in the literature, and also because the light-matter system is
deep in the weak coupling regime, increasing the prospects for its experimental

realization using current nanophotonic technology.

Moreover, we show that our approach is applicable to other non organic devices
as intersubbands in multi-quantum wells (MQW?’s), where the state—of-the—art
in both material and optical parameters engineering, as well as the capability
of having smaller N compared to molecules, promises stronger effects on the
nonlinear phase modulation, enhanced by tailored inhomogeneities among the
dipoles which introduces contributions of the dark manifold. We expect our
model will help in the development of new infrared nanophotonic hardware for
applications ranging from quantum control of materials to quantum information

processing.
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Chapter 1
Introduction

The property of linear superposition of the Electromagnetic (EM) field in vacuum
is a fundamental principle, stated in both Classical and Quantum Electrodynamics
(QED). This implies that 1) photons, the quanta of light, do not interact to each
other and 2) polarizable matter is the fundamental source of Nonlinear Optical
phenomena (Chang et al., 2014). Basically, it is a consequence of the anharmonic
motion of charge carriers induced by sufficiently intense optical fields when they

are transmitted trough the media (Boyd, 2008).

About this last requirement, the birth of laser technology marked a milestone
as it leveraged the exploration of novel optical and material phenomena. In
particular, its application as a source of coherence in nanophotonics allowed us to
observe the exotic ways matter behaves when it is dressed with just one photon or
the electromagnetic vacuum (Wineland and Itano, 1987; Haroche and Kleppner,
1989). This regime is highly desired as the control of the fast coherence times in
which light-matter interactions occur is the basis of modern Quantum Computing
technologies (O'Brien, 2007).

The development of the field owes a significant amount to the use of semiconductor
materials, not only for the emergence of semiconductor lasers but also by
the sophisticated state of the art in growth and doping techniques and their
tunability and integrability in miniaturized optoelectronic circuits. Good examples
are engineered dipoles like quantum dots (Bera et al., 2010) and quantum
wells (Fox and Ispasoiu, 2017) that present themselves as semiconductor-based

heterostructures with the ability to simulate complex quantum systems while



preserving their fundamental features in a simplified fashion.

In this context, the inquiry into how the degree of anharmonicity within the
spectrum of a material system impacts its optical response arises naturally.
For atoms modeled using the two-level approximation within a resonator,
nonlinearity is intricately linked to the anharmonicity of the coupled spectrum.
This anharmonicity becomes more intricate as the strength of the light-
matter interaction intensifies, directly correlating with regimes of strong or
ultrastrong coupling (Kimble, 1998). Conversely, in this Thesis we show that
for molecular vibrations within infrared cavities, anharmonicity constitutes an
inherent characteristic that can be coherently transferred, even within a weak
coupling regime. This transfer facilitates the modulation of the nonlinear phase
within a transmitted wave signal, an effect that scalates with the square of the
effective photon flux rate but diminishes inversely with the number of molecules.
This inverse relationship poses a challenge in realizing the higher shifts predicted
by the model, primarily due to the complexity of confining only a small number

of molecules within modern cavity QED.

This thesis presents a theoretical prediction that connects the anharmonicity
of intramolecular vibrations in molecules and also with the intersubbands of
a multiquantum well (MQW) embedded in a mid-infrared nanoantenna, with
intensity-dependent phase rotations due to incoming femtosecond pulses that
weakly excite the near field of the resonator from the coupled vacuum. In
particular, we use MQW empirical parameters because they allow the experimental
observation of higher nonlinearities due to the small number of coupled oscillators.
Specifically, we predict that the shifts are enhanced when non-identical anharmonic
dipoles are used due to the coherent and incoherent interaction with the dark
manifold in the dipole approximation. To estimate the phase shift values that
can be achieved in near-future experimental implementations, we use a mean-field
approach to gain phenomenological insight. Our methodology can be applied to
other types of systems and expanded to include additional quantum wells and

multiple laser fields.
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Chapter 2

Electrodynamics

2.1 Motivation

The process of quantization of the EM field relies in its decomposition into normal
modes, by Fourier analysis, promoting the canonical coordinates and momenta
associated with each oscillator to operators acting in a Hilbert space. In order
to make this decomposition, it is necessary to study how the electromagnetic
waves are constrained by the geometric properties of the propagation media,
and in particular, to its boundaries with respect to “free space” (Jackson, 2003).
The purpose of this chapter is to show how can we emerge a single quantized
electromagnetic mode of oscillation inside an idealized optical resonator. This
theoretical example is a simplification in the sense that realistic cavities generally
manifests a multi-mode spectrum. However, the idea of single out just one of them
makes sense from the superposition principle; the analysis of one is physically
representative of the general frequency dependence, but not all the frequencies

will be of the same importance, allowing us to have a selection criteria.

For our work, we are interested in infrared cavities, where the single mode cavity
QED approach is frequently used to describe the THz resonance of the empty
cavity and the way it couples with the material dipoles within the optical device,
which also exhibit resonances in the same frequency range. Then, the single
mode analysis is quite sufficient. To enforce this idea, we will end the chapter by
reviewing some milestones in the literature in nanophotonics, highlighting the use

of single cavity QED expected properties.
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2.2 Cavity mode quantization

2.2.1 Classical wave equation

According to classical Electrodynamics in free space, the electric and magnetic
fields behave as a unified wave-like phenomenon. Moreover, the speed of this
wave, surprisingly identified as light, is obtained from the vacuum constants as
c = 1/\/eojto. This is derived from the Maxwell equations

0
VxE=-2B, (2.2.1)
0
H=-D 2.2.2
V-D =0, (2.2.3)
V- B=0, (2.2.4)

where D = ¢gE and B = poH are the constitutive relations between the electric
and displacement field, and the induction and magnetic field. From this coupled
equations, we know that the Cartesian components of both electric and magnetic

field obeys a wave equation as reads

1 0?

Twort T

V2u 0. (2.2.5)

This result can be obtained by taking the curl of Eq. (2.2.1) and introducing Eq.

(2.2.2) with the correspondent use of the constitutive relations

VxVxE= —MO%(V x H), (2.2.6)
0 (0
= _MOEOE <&D) y (227)

and using the Gauss Law Eq. (2.2.3) and the following identity
VxVxE=V(V-E)- V’E. (2.2.8)

to have a wave equation for the electric field E

2

%)
V’E — Hoo 55 B = 0. (2.2.9)
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It can be found a similar route to find the wave equation for the field of magnetic

induction B.

Equation (2.2.5) has the typical plane wave solutions. An electric field composed

of just one of them its expressed like
E(r,t) = nEye™ ™ 4 cc., (2.2.10)

where we added the c.c. symbol for the complex conjugate, ensuring the reality of
the field observable. The requirement of zero charge distribution implicit in Eq.
(2.2.3) imposes the restriction

n-k=0, (2.2.11)

stating the transversal nature of the electric field with respect to the propagation of
the wave indicated by k. As the electric field is always pointing in the transversal

direction of propagation, it can be decomposed in two unit vector for the plane as

E(r,t) = (0 B + ngFy) e®™ ™ 4 cc., (2.2.12)

where E; and E, can be complex, allowing for different types of polarization ' |

due the phase difference between these two amplitudes.

2.2.2 Single mode in a cavity

We will consider an empty region of the space with volume V' = SL confined by
ideal mirrors of transversal area S, separated by a length L. The wave axis is z,
and then the electric and magnetic field rely on the x — y plane. These mirrors are
assumed to be perfect conductors, and set the boundary conditions for the electric
field to be zero in the frontiers. We can select one of the possible stationary modes

inside the cavity, that reads

E.(z,t) = Aq(t) sin(kz), (2.2.13)

'Tf both have the same phase, then the light is called linearly polarized. The opposite cases give
raise to the well known circular or elliptically polarized light typical in Optics setups.
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where k = w/c ?, A is an amplitude with dimensions of electric field over length,
and ¢(t) is a dynamic variable with length dimensions, that can be treated as the
canonical coordinate, in analogy with mechanical harmonic oscillators (Scully and
Zubairy, 1997).

This expression can be used to derive the magnetic field H,(z,t) together with eq.
(2.2.2) to be
A
Hy(z,t) = %q(t) cos(k2). (2.2.14)

Then, the Hamiltonian of the system is expressed as

1
H = 5/ {€E: + poH; } dp (2.2.15)
1%
1
= 5{p? + w¢?}, (2.2.16)

where p = ¢ is the conjugated momentum considering m = 1. Notice that

we arrived to the Hamiltonian for a single Harmonic Oscillator relying in the

relationship A = 1/2w?/(eV).

2.2.3 Correspondence rule

What we call correspondence rule is the promotion of the canonical variables in the
Hamiltonian for the classical harmonic oscillator to operators acting in a Hilbert
space

q— G, and p — p, (2.2.17)

together with the commutation rule for this operators
(¢, p] = ihl, (2.2.18)

where 1 is the identity operator, that in general is assumed to be hidden. The
Hamiltonian, Electric and Magnetic field now are also operators. These two last

fields play the role of canonical operators, like the position and momentum of a

2In principle, as the boundary conditions set k = nm/L, there are infinite but countable number
of modes. To simplify the analysis, let’s consider just one of those modes as this will not modify
the subsequent argument.
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mechanical oscillator. Their explicit forms are

1
H= E{ﬁ + w?@*}, (2.2.19)

Ey(z,t) = 2 7sin(kz) (2.2.20)
X ) - eovq ) A

A Mo€o [ 2w?

B = — [ — ) 2.2.21
y(2,1) k’ eon cos(kz) ( )

This results are exact, however the regular way to use this formalism of a quantized
harmonic oscillator is by using a canonical transformation to the operators of
annihilation & = (1/v/2hw)(wd + ip) and its hermitian conjugate version, the
creation operator a' = (1/v/2hw)(wd — ip) *. Under this transformation, the

observables of our interest look like

H = hw {a*a + %} : (2.2.22)
5 hw
E.(z,t) = eo_v<d + a') sin(kz), (2.2.23)

B,(z,t) = %1 / %(a — at) cos(kz). (2.2.24)

The amplitudes & = \/hw/eoV and By = \/fw/(V/ o) are the fields per photon

(Gerry and Knight, 2004). Finally, it will be useful to have at hand the reverse
relationships connecting the annihilation and creation operator with respect to

the canonical coordinates operators

h
Q=g+ ah), and p=4/—(a—a) (2.2.25)
w

implying that

<q>:\/¥Re[<a>], and  (p) = v2hwlm[(a)] (2.2.26)

3Remember that in linear systems, operators eigenvalues are real for hermitian operators obeying
At = fl, and then the hermicitity of the ¢ and p is required. This also implies that & and at
are non hermitian, a fact that can be seen from the eigenvalues « of a, that are c-numbers
encoding the information of a coherent state dla) = ala).
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2.2.4 Eigenstates of the single mode quantum Hamiltonian

An important property of the previous representations in terms of @ and a' is
that they allow the direct diagonalization of the Hamiltonian by using the number
states |n); a special type of vector in an infinite dimensional Hilbert space called
Fock Space. They are eigenstates of the Hamiltonian, and the related eingenvalues

constitute the energy spectrum of the single mode harmonic oscillator:
A 1
H|n) = hw (dT& + 5) In) = hw(n + 1/2)|n). (2.2.27)

These energy values, F,, = hw(n + 1/2) are equidistant between them with
energetic transition AF = hw, and presents a minimal, ground energy, or vacuum
energy, that is nonzero and equal to Ey = hiw/2. This last statement is presented
frequently to introduce the Casimir effect, due to the zero point fluctuations of
the EM field * . Also, it is a signature of a quantum harmonic oscillator in general,
not just for the quantization of the EM field: any other non harmonic potential

will produce, under quantization, a non equidistant energy spectrum.

It can probed that these states forms a complete set, obeying the following

decomposition
> |n)(n| =1, (2.2.28)
n=0

The annihilation and creation operators act on the number states in the following

5

way

aln) = v/nln — 1), a'ln) = vn +1jn+1). (2.2.29)

and then they are not diagonal in the {|n)}>° ; basis. It is my intention to show

explicitly these operators in the number state representation, as it is usual to take

4In any of the following chapter, we are going to hidden this vacuum energy, as our discussions
relying always in the physics derived from energy transitions.

5This is the reason why these operators are called ladder operators, as they allow to move
between the subsequent number states, up or downward.



2.2. Cavity mode quantization 9

just a portion of these expansions for numerical (and finite) purposes:

H= ﬁwi (n+1/2)|n)(n|, (2.2.30)
Q= Z Vnln —1)(n|, (2.2.31)

a' = Vn+1n+1)(n]. (2.2.32)

2.2.5 Examples of field dynamics

Assumed the single mode QED to be a closed system, the system evolution
is unitary, and then we can derive the evolution of the system state as
l(t)) = UJ(0)), where the unitary operator can be written in the form
U(t) = C(t) expla(t)ata] (Klimov and Chumakov, 2009a) following the quantum
harmonic oscillator Hamiltonian H = wa'a, where i = 1. By applying the

Schrédinger equation for the time-evolution operator we obtain

d. ..
—U = HU 2.2.33
S0 = a0 (22.33)
(€ fr— atar
=1 5+aaa U =wa'al, (2.2.34)
= U(t) = exp[—iwta'a). (2.2.35)

This means, for example, that if the field initial state is some combination of
number states [¢(0)) =) ¢,|n), the evolution at time ¢t will be

(1)) = cne™ ™" n) (2.2.36)

n

If the field state under consideration is initially in a coherent state, this is, a

eigenstate of the annihilation operator a|a) = ala), with

o0

() =) = T2 o), (2.2.37)
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then the dynamics will translate to rotations at frequency w of the coherent

parameter
at) = {a(t)) = (a(t)|ala(t)) = ae ™ (2.2.38)

keeping the mean number of photons Tr[a'a|a)(a]] = |a|?. The system predicts

no transition to higher or lower energy steps.

Let’s visit a more interesting example.

2.2.5.1 Harmonic oscillator with a classical driving

The general form for a classically driven Harmonic quantum oscillator is expressed
as reads (Klimov and Chumakov, 2009b)

~

H = wa'a+ Fy(t)a + F;(t)a'. (2.2.39)

where Fy(t) represent the (classical) pumping field. We use the later argument to

write the evolution operator as follows

U(t) = C(t)eralaghmal ce(t)a, (2.2.40)
= EU = (5 +aata + herd'agto—aata + éea“T“eb“T&e_baTe_aaTa) U
C s ata " ant s —an 3
=l +aa'a+be*a" +¢(e*a—b) | U (2.2.41)

In this derivation it was used the Baker-Campbell-Hausdorff formula to derive
the formulae e®d'@gfe—0a'a — cagt or 84’ ge=Pa" — G — 3. By comparing with the

Heisenberg equation for the evolution operator, we have

8. .
i (5 — bc‘:) +iaala + ice *a + ibe*al = wala + Fy(t)a + Fi(t)al.  (2.2.42)

The system of equations implied, that we obtain by comparing the operator

coefficients in both sides of the equation above, is easy to solve; the solution for


https://en.wikipedia.org/wiki/Baker%E2%80%93Campbell%E2%80%93Hausdorff_formula
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arbitrary driving function considers a(t) = —iwt, b(t) = —c*(t) and

c(t) = —i /O t dre ™" Fy(7), (2.2.43)
C(t) = exp [— /0 t dre™™ Fy(T) /0 ' d%e“ﬁFj(%)] : (2.2.44)

Let’s see what is the evolution of an interesting initial state as the vacuum by

applying [1(t)) = U(t)|0) for driving functions obeying Im[Fy(t)e~ ] = 0:

~ (b(t)e )"
n=0 \/m
= |b(t)e ") (2.2.46)

In), (2.2.45)

where we use the definition of the displacement operator

A

D(a) = e2i'=0"a — g~lof?/2 08t g—a"a (2.2.47)

and its action on the vacuum
D(a) e 1o/ Z —yn (2.2.48)

I want to emphasize this result: what we obtain from an initial vacuum state is
always a coherent state. Its evolution is dictated by the shape of the driving pulse,
codified in b(t). The mean number of photons bouncing in the cavity, that is just

the square of the absolute value of «, corresponds to (afa(t)) = |b(t)|?.

Finally, the “classical” energy that is transferred from the driving field to the
cavity can be calculated with the help of Equations (2.2.26):

l\')l»—t

{(B()* +w*(@())*} (2.2.49)
(a(t )>|2 = wlb(t)]?, (2.2.50)

= w|

In particular, if the driving function obeys Fy(t) = Fyp(t)e™! with ¢(t) a real

function, then we have that

2

Eq(t) = w|Fy|? (/OtQD(T)dT) (2.2.51)
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- squared pulse o
(é\t(t))ei(uf.+7r/2)

e (Gaussian pulse
(a(t)>ei(mt+7r/2)

! . I ; 1 L 1 L 1 1 L L L 1 1 1 I 1

t(ps) ot (ps)

Figure 2.2.1: Coherent state evolution (orange lines) for two different pulse shapes (blue
lines). The temporal widths have been chosen in order to have both functions with equal
normalization condition. Green dashed lines indicate the steady value for the cavity coherences
to be FyTy = 0.389, in both cases. (a) Coherence evolution for the cavity mode driven by a
squared pulse with center ¢y = 0.6 (ps), width T} = v/27 x 0.155 (ps) and Fy = 1 (THz). (b)
Cavity driven by a Gaussian pulse with center ¢y = 0.6 (ps), width T = 0.155 (ps) and Fy = 1
(THz).

It is interesting, also, that the time-dependent probability Pjgy(t) to find the state

of the system in the vacuum state is expressed in terms of this classical energy:

Poy(t) = |(0b(t)e™ )2 = e PO = =0/, (2.2.52)

2.2.5.2 Resonant driving pulse with an step envelope

We start the examples with a squared pulse (an “step” function) with frequency

carrier resonant to the cavity mode wq = w, like the one plotted in Figure (2.2.1-a).
Then,

t—1to\ Foet iftg— L <t <to+ L
Fd(t):FOH( °>ewt:{ oe BTy 072 (2.2.53)

T 0 , elsewhere

where t; is the center and T is the temporal width of the pulse, respectively. This
case can represent a continuous laser with an ultra-fast switching in the instants

t = to+ T/2. The state at time ¢ is |b(t)e”™*) with

t t 0 Lt <ty—T/2
b(t)=—iFo/ drlI (TT 0) = —iR{t—to+T/2) , to—F<t<to+3
’ —iFR,T >ty — T2

(2.2.54)
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The field coherence (a(t)) = b(t)e™ ! represent an amplitude growing from zero
in a ramp up to a stationary value, always with a constant phase of —90°, and
rotating at angular frequency w. The stationary classical energy transferred to
the cavity field is

B = w(FT)% (2.2.55)

2.2.5.3 Resonant driving pulse with a Gaussian envelope

In this case we have that

_ (t—tg)?

Fy(t) = Foe™ 217 e ™t (2.2.56)

where it is straightforward to derive the dynamical coherent parameter to be

b(t) = (a(t))e! —z'FoT\/g (erf {%} +erf K}T:ﬂ) (2.2.57)

As you can see from Figure (2.2.1-b), the smooth Gaussian will generate a smooth
evolution of the cavity coherence up to its steady value ~ —i/27FyT. The

stationary classical energy transferred to the cavity field is

Eo s = w2m(FyT)?. (2.2.58)

2.3 Single cavity mode in the scientific literature

The use of a single cavity QED mode in Nanophotonics is widespread in the
scientific literature, even when it is just an approximation that works, apparently
pretty good. One might ask however, how much we trust in the validity of this
model. As any experimental realization, and any “cavity” or “resonator”, surely
will present a complex and well structured spectrum for a lot of possible reasons

;How can we be calm about choosing only one mode, discarding everything else?’.

6This concern is related, just in part, to the way we truncate a structured spectrum of a
nanocavity and how we single out just one of them from which we obtain the electric and
magnetic induction fields. From the covariant formulation of Electrodynamics we know that
there is some freedom in the way we choose the potentials {¢(t), A(¢)}. This, added to the
quantization method applied, in some cases, would generate different values from observables
depending on the gauge choice. This ambiguity is obviously a non physical artefact that must
be analyzed carefully, at least in the relativistic regime. Although these aspects goes beyond
the scope of this work I strongly suggest to read a recent article tackling this problem (Taylor
et al., 2022).
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In the following section we will see how we include all of the infinite remaining
modes with the label of enwvironment. This means that we treat the whole
electromagnetic spectrum by parts, giving to each one a different level of “physical

influence”.

Here we will not address these aspects in deep detail. Instead, suffice it to say
that the current literature contains successful examples of the application of this
minimal model that we proceed to review in the next lines. In turn, there are
other approaches available, if the complexity of the problem under study requires
a higher level of detail. Some interesting examples are documented in (Scheel and
Buhmann, 2009; Hernandez and Herrera, 2019).

2.3.1 Seminal experiments

The publication "Cavity Quantum Electrodynamics" (Haroche and Kleppner,
1989) is of paramount importance as gives a detailed account on early quantum
experiments aiming for the strong coupling of matter excitations, using Rydberg

atoms in microwave and optical cavities.

These experiments demonstrates that spontaneous radiation from excited atoms
can be greatly suppressed or enhanced by placing the atoms between mirrors or

in cavities. Some experimental realizations mentioned are:

e About the inhibition of spontaneous emission from Rydberg states of cesium
atoms in a beam as they passed between two 20-cm-long aluminum mirrors
(the cavity) separated by approximately L = 0.2 mm, by monitoring their
atomic radiation at A = 0.45 mm (Hulet et al., 1985)".

e The enhanced spontaneous (by a factor of ~ 500) emission in the millimeter
wave regime for Rydberg atoms of sodium coupled to a Fabry-Perot cavity
(Goy et al., 1983), where the cavity was resonant to the dipole transition, at
around 340 GHz".

e Rabi oscillations induced by a small thermal field in the superconducting

microwave cavity at 21.6 GHz and 2.5 K (Rempe et al.; 1987). This is one

"The gap between mirrors was built for optical frequencies. The idea is that by increasing the
ratio A\/(2d) > 1, the signal coming from excited atoms detected at the cavity exit increase,
confirming the inhibition of spontaneous emission rate.

8We are going to develop a theory for this phenomenon called Purcell effect (Purcell et al., 1946)
in Chapter 5.
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of the first experiments showing clearly the collapse and revival predicted
by the Jaynes-Cummings model (Jaynes and Cummings, 1963), which is
again, a model of one atom modeled as a two level system, and a single

cavity mode.

The rate of spontaneous emission of the atom, e.g. the probability 'y of photon
emission per unit time, depends on the coupling rate (.¢ of matter with respect
to the electromagnetic vacuum, which can be dramatically changed if the electric
field is confined to an small volume instead of free space’. This coupling of the
individual atom to the cavity field at frequency w is calculated with the Rabi

frequency
Qeff = deffgo/h (231)

where & = /hw/(V) is the electric field amplitude per photon in the
quantization volume V' and d.g is the matrix element of the electric dipole of the
two-level atom. As you can see, all these equations consider the case of an atom
and the field exchanging energy if there were only a single mode of the field. The
underlying theory showed great prediction power in relation to the experimental
results obtained and, historically, it greatly encouraged the development of this

area of research.

2.3.2 Simulations of molecular spectroscopy observables

Most of the experiments commented in the previous subsection consider microwave
Fabry-Perot cavities to couple, resonantly or not, to specific transitions in Rydberg
atoms. One associates, in general, atoms with applications in quantum computing,
to give an example. Alternatively, it is known that molecules in quantum cavities

promise applications in control of chemical reactions (Hutchison et al., 2012).

The prediction power of hybrid light-matter Hamiltonians containing just a single
cavity mode have an impressive example in the Holstein-Tavis-Cummings (HTC)
Hamiltonian (Herrera and Spano, 2016), where the cavity mode, electronical
potentials and vibrational degrees of freedom are treated in the same footing.
Roughly speaking, the HTC model consists of one single cavity QED mode with

frequency w,, IV intramolecular vibrations with frequency w,, modeled as quantum

9This coupling rate also affects the probability P.(t) of finding the atom in its excited state
at time t, assuming it was prepared in this state at time 0, that in the single mode approach
shows the well now Rabi oscillations.
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(a) Absorption and photoluminiscence simulation data for an organic

microcavity with N = 20 emitters from (Herrera and Spano, 2017). (b) Experimental LPL
spectrum obtained by (Hobson et al., 2002) for the organic cavity simulated in (a) .

harmonic oscillators, and N two-level systems modeling the electronic excitations
with transitions w,, where the only missing coupling in the interaction term is

between the cavity mode and the vibrations.

We show in Figure (2.3.1-a) the simulations carried using this Hamiltonian'’
to reproduce some experimental observables reported in (Hobson et al., 2002),
for cyanine dye J aggregates in a low-QQ microcavity, whose experimental

photoluminiscence spectrum is shown in Fig. (2.3.1-b).

The model predicts the emergence of several types of dark states, this is, hybrid
resonances poorly or completely invisible from absorption although they can
radiate. This is confirmed by the simulations plotted in Figure (2.3.1-a) where it
appears a weak peak lower, but close, to the vibrational frequency w/w, ~ 0.4
(green dashed rounded rectangles) in the absorption curve (blue points), that
becomes much larger in the LPL curve'' (orange points), and is even larger than
the Lower Polariton (LP) and Upper Polariton (UP) side-bands, that are the
bright states we expect in a strong coupling regime, forming a frequency splitting
around the vibrational resonance w/w, = 1. This is just what we see from the
experimental LPL spectrum, where we enclose the dark resonance between a

less stronger LP peak and a vanished UP resonance, as it is shown from the

simulations.

10Joined to a formal treatment of the dissipative dynamics that we will discuss in Chapter 2.
" This means Leak PhotoLuminiscence (LPL), or just the photoluminescence spectra through

the mirrors of the cavity.
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2.4 Final words

The examples shown previously does not demonstrate that it is enough to take
just one cavity mode, always. However, in most of the cases reported, the single
cavity QED approach captures the most fundamental features of the problems
under study, although there are some complexities not mentioned that are going

to be the central theme of the next sections.

Anyway, the intention was to give a flavour of the formalism and to show that we
can “do interesting physics” when we treat the electromagnetic field in its quantum

version.
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Chapter 3

Open Quantum Systems

3.1 Introduction

The usual way to interpret spectroscopic data is by recognizing frequency peaks
or dips '; broad up to the point to be considered frequency bands, or isolated
resonances if they look narrow enough. We assume that a resonance dip in the
absorption of a certain sample evidences a driven energy transition of two internal
levels, physically expressed with the equation AE = E,» — E, = hwqip, where the
frequency wai, = AE/R is taken from the center of the dip.

But, if the theory seems to talk about precise transitions between quantized energy
states, then, how we explain the peak and dip widths measured? Why there are

narrower or broader bands in a spectrum, instead of perfectly sharp resonances?

Broadly speaking, this can be explained in terms of the fluctuating quantum
property of Nature: there is a complex combination of coherent or incoherent
random processes among several degrees of freedom overlapped with the system of
interest, causing broadening, sharpening and/or frequency shifts, among others,

that prevent us to observe ideal sharp peaks °.

The idea of this chapter is to introduce consistently a way to “open” our small
quantum harmonic system to treat, approximately but as correct as possible,
the lossy effect of the surrounding universe, that in the quantum jargon is

called “decoherence” and/or “dephasing”. In this formalism, the environment

1Or energy peaks and dips depending on technical jargon.
°In a mathematical language, we do not see isolated Dirac Deltas in the spectrum.
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(the reservoir or bath) is modeled as an infinite collection of harmonic oscillators
in internal thermal equilibrium, with a spectral density that encapsulates the
characteristic time of its internal fluctuations (the bath correlation time ¢g), which
we are going to assume it is much faster than the oscillator lifetime, and then
allows us to do perturbative assumptions. What we finally obtain is the influence
of the environment reduced to parameters in a Quantum Master Equation for the
reduced density operator of interest, in Lindblad form (Lindblad, 1976), that we
can write as (dpg/dt) = Lps.

One of the main conclusions derived by this formalism and applied to the near field
of a cavity QED mode, is that the bandwidth of the resonances observed in cavity
reflection or transmission setups encodes the influence the free electromagnetic

field (the big reservoir) in thermal equilibrium onto the cavity density of modes.

3.2 System plus reservoir approach

In the previous chapter, the cavity quantum harmonic oscillator shown was
considered a closed system by default: there is no energy flux by its boundaries
because there is nothing more in space than the cavity and its mirrors with
infinite conductance. In reality, an optical cavity has non perfect mirrors, with
frequency and intensity dependent finite transmission, and then can interact with
the environment. We say that the cavity is an open system and then the evolution
of any of the parts have not necessarily an unitary evolution. These reasons,
together with the fact that the environment usually has much more degrees of
freedom an complexity than the main system, forces us to seek for Quantum
Master Equations that allow us to calculate the evolution of our subsystems of

interest in a systematic and simplified way °.

We can model the interaction of a single cavity mode with an ensemble of harmonic

3In general, for all but the most basic of Hamiltonians, an analytical description of the system

dynamics is not possible, and one must resort to numerical simulations of the equations of
motion. In absence of a quantum computer, these simulations must be carried out using classical
computing techniques, where the exponentially increasing dimensionality of the underlying Hilbert
space severely limits the size of system that can be efficiently simulated. However, in many
fields such as quantum optics, trapped ions, superconducting circuit devices, and most recently
nanomechanical systems, it is possible to design systems using a small number of effective
oscillator and spin components, excited by a limited number of quanta, that are amenable to
classical simulation in a truncated Hilbert space.” Quote from the QuT7P documentation.


https://qutip.org/docs/latest/index.html
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oscillators, that we are going to think as the thermal bath of free EM modes *.

The Hamiltonian of such closed system is expressed as reads

H = Ho + Hins, (3.2.1)
Ho = Hoe + Hor, (3.2.2)
= hweala+ Y hwjéle;, (3.2.3)
9
Hiw = > _ hasj(ale; + cla), (3.2.4)
0}
=d'K + K'a (3.2.5)

where the interaction Hamiltonian is written in a form that conserves the number
of excitations of the system °. We have implicitly defined K= > I hr;cj, where
the sum runs arbitrarily in discrete and probably infinite j—modes. If the single
cavity mode plus reservoir is a closed system, then the evolution of the full density
operator ppy obeys the Schrodinger equation. To solve this equation, it is usual

to use the interaction picture, where

Hine (1) = M0 MY om0t/ (3.2.6)
= ha(eem)ale; 4 e e il (3.2.7)
(s}

efi'?:iot/hpAFuuei';:[ot/h'

approximations involving time scales comparisons, as we can see: we separate the

and ppag = This representation is best suited for
dynamics related with the free Hamiltonian from the interaction part, that we are
going to assume is slower than the former. It can be derived a convenient, but

exact, shape of the Schrodinger equation for the full density operator as reads

7o = 3 o0 (0] = 75 [ Flusl0). Pla®), ()0 (329

This equation shows, in the second term, that we have a second order contribution

of the interaction Hamiltonian to the dynamics of the coupled system. It seems

1As is stated in (Carmichael, 1999), the formalism treated has some arbitrariness, as the coupled
ensemble of harmonic oscillators can represent other dissipative mechanisms, as vibrations in a
crystal, to give an example.

5This is the typical Rotating Wave Approzimation RWA assumed in certain light-matter system
approaches. It is also the simplest way to address coherent coupling between oscillators.
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that we are in the right route for our first approximation. But before, we are
interested in finding an equation for the reduced density operator of the cavity
p = trr[pran]. After tracing over the reservoir space in Equation (3.2.8), and some

algebra, we have that

Co- / b { [Pl (1), Pl (1), ()] (3.2.9)

What happens with the non integral term in eq. (3.2.8)? This c—number term can

always be arranged in the Hamiltonian to vanish at this stage of the calculation.
In Equation (3.2.9), there are some issues that I want to highlight:

e The integral contains the full density operator evaluated in the primed time
0 <t < t. We notice that the shape of this equation is self-referential as
both p(t) and ppu(t) are unknown.

e The interaction Hamiltonian appears twice in a product. Then, we will have
terms proportional to k;k;. If we make sure that, in general, w? > Kjrj,
then the coupling with the bath is weak and we expect that the small cavity

system will not change the reservoir dynamics in an important manner.

3.2.1 Born approximation

Obviously, the cavity system will be affected by the reservoir in some manner and
then pry(t) will not be separable always. Is there a well founded way to express
that the density operator is almost separable at all times, as the reservoir will
not change considerable from the initial state? Let’s think that the initial state
of the coupled system is separable and the reservoir is in thermal equilibrium at

temperature T °:

pru(0) = HO)R, (3.2.10)
R = Hexp(—hwj 1e;/(ksT)) (1 — exp(fw;/ (ks T))). (3.2.11)

The formal way to express this idea is called Born approximation. It reads

pran(t) = PR + O(Hine), (3.2.12)

6Taking closely a verbatim quote (Carmichael, 1999), the reservoir can represent the vacuum
radiation field into which an optical cavity mode decays through partially transmitting mirrors.
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where the O(H;y) term is a perturbation of the order of the interaction, that
we are assuming weak. In practice, we take just ppau(t) = p(t)R in Equation

(3.2.9) as every product containing the perturbation O(H;,) will be a cubic power,

allowing us to neglect them and keep only the second order factors.

After tracing the reservoir operators with respect to 7@, the remaining nonzero

terms of the Master Equation read:

—p=— /0 {[aaTﬁ(t — 1) —alp(t — 7)ale (KN (t)K(t — 7))g + h.c.

+latap(t — 1) — ap(t — T)alle™ (K () Kt (t — 7)) r + h.c.} dt’, (3.2.13)
where 7 =t — ¢t/

(BN OR (- 7))p = / " duweTg(w) [5(w) (e ), (3.2.14)

(R(OKT(t = 7)r = / T dwe )RR ER + 1), (3215)

and (O)g = trgr[OR]. Notice also that we transformed the summation in the

j—oscillators in an integral in frequency. Explicitly

(KT)K(t —7))g = E ]fij|26iwj7tr7g[é;éj7€] — / dwe™ ™ g(w)|x(w)|*(E] éu) R
- 0
j

(3.2.16)
Formally, g(w) = >_; d(w — w;) is the spectral density of the reservoir. Also,

o1/ (kBT)

oy
<chw>'R = m (3217)

is the mean photon number at frequency w and temperature T'. To understand the
meaning of this mean value, imagine that this reservoir is at room temperature.
Then kgT ~ 0.0261234 eV. We summarize some important numbers in Table 3.2.1.
At room temperature, the reservoir has an average of one photon of frequency

4.38 THz, and is less probable to find thermal photons with higher frequencies.

3.2.2 Markov approximation

In Equation (3.2.13), we have the 7 dependence on the reduced density operator

and then it is necessary to integrate it together with the other factors. However,
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Temp. (° C) | Energy (meV) | Freq. (THz) | (¢ é.)r
30 18.1074 4.38 1
30 26.1234 6.32 0.582
30 49.628 12 0.175926
30 165.427 40 0.00178

Table 3.2.1: Excitation mean number as a function of the temperature, energy
and frequency.

we know that the time scale ¢ of the dynamics of this operator is restricted to
the decay time of the cavity coherence, that we can call as t > t.. As you can
see, the dynamics of the reservoir is encapsulated in the correlation functions. If
those correlations functions are limited by a time tr < t., then we can neglect
the effects on the cavity density operator by doing (¢ — 7) ~ p(t). This is part of
the Markov approzimation: by doing this replacement, it looks that the evolution
of the density operator in Equation (3.2.13) only depends on itself at actual
time ¢. In this sense, we say that this approach is only valid for Markovian (or

memory-less) systems. After the Markov approximation, we arrive to

d t [ee)
45— apat — atap) / dr / dwe @ gk + he.  (3.2.18)
0 0

dt
where we neglect the terms proportional to (¢f,¢,) as we know that, in the case of
interest for this thesis, w. = 40 THz and then (¢], &,.) ~ 107 (See Table 3.2.1).
We know that the integration in 7 goes up to a time t. higher than the correlation
time of the reservoir tg = h/(kgT’). It seems harmless then to extend the time
integration in (3.2.18) to infinity. This is useful as the complex exponential inside

becomes a Dirac Delta plus a principal value term like it reads

> P.V.
/ dre=@ )" — 1§(w — w,) +i v (3.2.19)
0

W — We

This Dirac Delta will collapse the frequency integration, and the principal value

will modify the resonance frequency in a manner that, in general, is neglected

7

for being a small correction ‘. Then, keeping just the terms evaluated at w. by

the Dirac Delta, we arrive to the following expression we are interested in, in the

"As it is mentioned in (Carmichael, 1999), this is a first contribution of the frequency Lamb shift
that does not consider relativistic effects.
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Schrodinger picture

p = —iwe[Hoe p] + 5 (2apa’ —alap— pila), (3.2.20)

i =2mg(we)|r(we) (3.2.21)

3.3 Relaxation and dephasing processes

In order to “ground” the last result about the parameter & (just x from here),
let’s think in our cavity, modeled as a quantum harmonic oscillator. In this
context, k is called as the cavity decay rate, and it will appear in the derivation
of the equations of motion for the field observables, in particular for the mean
or expectation values in time, controlling their rate of damping, like any classical

oscillator theory.

This decay rate affects differently onto the diagonal or off-diagonal elements of

the reduced density operator:
e The populations (diagonal terms) decay with the full rate .
e The coherences instead (off-diagonal terms) decay with half this rate /2.

This is clear by checking the following equations of motion and their respective

solutions
%@) _— (g + iwc> (@), %(am = —x(ata), (3.3.1)
= (a(t)) = —(a(0))e~3te~t, (ata(t)) = @la0)e™,  (3.3.2)

where we derive d(0) /dt = tr,[O(dj/dt)] in the Schrodinger picture. The equation
of motion for (a) clearly represents a damped oscillation; its Fourier transform

has the shape of a Lorentzian with frequency center at w = w, and full width at
half maximum (FWHM) dw = k.

3.3.1 Dephasing time

The modelling of resonances as Lorentzians curves is ubiquitous in Spectroscopy,

as it is directly connected with the lifetime of the excitations observed. In optical
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Figure 3.3.1: Simulations of two slow and fast decaying cavity coherences oscillating at
frequency w, = 40 THz, where the initial condition is fixed as a coherent state with (a(0)) = —i.
(a) Slow decaying coherence at decay rate kK = 1.5 THz. (b) Fast decaying coherence at decay
rate k = 15 THz.

protocols able to measure the electric field £ o (a+a') with enough time resolution,
it is important to have a characteristic time of the amplitude loss. The dephasing
time is defined as T5 ,, = 2/, where if it is not explicitly mentioned, we will always
assume that the numerical value of x is written in absolute frequency units, instead
of angular frequency®. For example, for x = 1 THz, the dephasing time is nothing
more than 75, = 2/k = 2 ps. In case contrary, if the notation used is /27 = 1
THz, then the dephasing time must to be calculated as T, = 2/k = 0.318 ps.
Obviously, this is an important methodology issue as everything else, and it must

to be done with careful.

In Figure (3.3.1a-b) are shown two oscillating coherences with two different
decay rates, the first one lower in one order of magnitude than the second one
(k1 = 0.1ky = 1.5 THz). It is clear that if the experimental time resolution
is able to solve and fit the decay tale of this coherence, related with the near

electric field of the cavity, then it can be deduced the dephasing time with the
rule [(a(t))]/[(a(0))] = exp(—t/Tz.x)-

81f the decay rate is obtained from the angular frequency width éw of a Lorentzian, it must to
be multiplied by 27 to compensate the units. This is the reason why one often encounters the
notation x/27 in the scientific literature.
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Chapter 4

Anharmonics Oscillators

4.1 Anharmonic oscillators in Nanophotonics

Nanophotonic devices are a class of miniaturized optical devices that are engineered
to have dimensions on the order of nanometers. They are designed to manipulate
and control light in different regions of the EM and matter spectrum, in very
small confinement volumes V', as it is expressed in the electric and magnetic field

amplitudes per photon, & and B, respectively, derived in section 1.

The concept of anharmonicity arises from the non-equidistant energy levels
structure present in those hybrid devices, allowing for nonlinear responses to
the incoming electromagnetic fields, but also in the isolated interaction with the
vacuum. For our particular interest, these intrinsic anharmonicities (for example,
in molecular vibrations) or engineered ones (heterostructures, meta-materials,
etc.) are important as they play a significant role in the nonlinear modulation of

the phase of the electric near field we report in (Arias et al., 2023).

Our interest in the anharmonicity of quantum oscillators is the connection we
show with nonlinear behaviour. This relationship has been reported in (Albarelli
et al., 2016), where it is shown that anharmonicity and nonlinearity can be seen

as nonclassical resources.

Generally speaking, the interaction between the cavity field and the material

oscillators in a nonlinear media can lead to phenomena such as:

Self-Phase Modulation In cavity QED setups, where the cavity field intensity
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is relatively high, the nonlinearity in the energy levels of the emitters can lead
to self-phase modulation (SPM) of the cavity field. Self-phase modulation
refers to the nonlinear phase shift that the electric near field experiences as

it propagates through the medium (Shan et al., 2019).

Cross-Kerr Nonlinearity If we use the nonlinear media as a waveguide, the
phase of a signal or pulse propagating in can be affected by other pulses
propagating at the same time. As they will mutually influence each other,
this phenomenon is called cross-phase modulation (XPM) (Dalafi and Naderi,
2017). This effect can be utilized for quantum information processing, such

as quantum gate operations in quantum computing.

Nonlinear Dispersion The energy anharmonicity can also result in nonlinear
dispersion, where the phase velocity of the cavity field is dependent on its
intensity. This effect is relevant when considering the propagation of light

pulses through cavity QED systems (Drummond and Walls, 1980a).

4.2 Sources of the anharmonicity

As it is pointed out in (Kuzyk et al., 2013), the development of the experimental
nonlinear optics field has an early referent in the works of John Kerr (Kerr, 1875).
Surprisingly, one of their discoveries was the measurement of the refractive index
change of collimated and spectrally filtered sunlight in response to a voltage applied
to organic glass plates made of amber resin. Of course, in that time there were no
notion of such thing as “discrete energy levels”, and then the connection between
nonlinearity and anharmonic spectra were not discovered yet. The development of
Quantum Theory together with the fabrication of the first lasers allowed the use
of higher optical intensities, required to address observable nonlinear effects, and
obviously opened the way to the exploration and characterization of the nonlinear
behaviour of matter when it is driven by electromagnetic fields, in particular

connected to the anharmonicity present.

4.2.1 Organic materials

As a curiosity fact, despite the discovery of John Kerr with organic compounds,
the use of organic matter to reach different regimes of light-matter coupling in

cavity QED), taking advantage of its non-linear properties, is relatively recent
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(Lidzey et al., 1998). When the organic media is used as a semiconductor crystal,
the spectral properties of interest are related to charge carrier transitions of an
specific molecular orbital (Burroughes et al.; 1990). In these devices, nonlinear
effects arises from the conjugation of self-localized exciton states, particularly
when they are dressed with polarons, in conjugation with the delocalized molecular
orbital in the meta-molecular structure (if it is a chain, for example, in dye J-
aggregates (Grice et al., 1997)). Here, there is not a direct connection between the
anharmonicity of an non-hybrid and separable degree of freedom, and nonlinear

collective responses.

The scenario is different when we drive excitations related with intramolecular
vibrational motion. The fact that vibrational potentials are highly nonlinear can

be understood for two reasons:

e The bond strength between atoms in a molecule changes considerably in
every stage of the oscillation movement. The restorative and repulsive
“forces”, with respect to the common nuclear coordinate, deviates from
the harmonic behaviour, in the sense that are “weaker” for larger atomic

separations, and are “stronger” for shorter distances, respectively.

e Any vibrational potential must to account for dissociation, strongly

conditioning the energetic structure.

There are both experimental and theoretical works to characterize the complex
anharmonic behaviour of diverse types of molecules, or directly using these data
for semi-empirical works (Fulmer et al., 2004; Venkatramani and Mukamel, 2002;
Grafton et al., 2021; Triana et al., 2022; Arias et al., 2023).

We have a prototypical example in the Morse potential for diatomic molecules

(Morse, 1929). The analytically derived energy levels, that scales as

2D, a’h?
E, = —D. + ahy| = 1/2) — 1/2)2,
+a . (v+1/2) 2Deu<y+ /2)

where D, is the dissociation energy, a is a calibration parameter of the Morse

potential, and pu is a dimensionless reduced mass of the diatomic molecule, show
decreasing steps in the energy climbing (Hernandez and Herrera, 2019), correlating

with the red-shifted progression we expect in any spectroscopic observable.
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4.2.2 Inorganic semiconductor dipoles

In tailored semiconductor devices as quantum wells (QW’s) or noninteracting
arrange of quantum wells or Multi-quantum wells (MQW?’s), the confinement of
charge carriers, or excitons generate a finite division in the valence and conduction
bands, called subbands (and inter-subbands in the case of MQW’s), that are
anharmonic in general, as it can be seen from the pedagogical example of an
infinite quantum well (the “particle in a box”) where
n’m?h?
"= e n=12...

shows increased energy transitions in the ladder climbing and a blue-shifted
progression with respect to the fundamental transition Ay = 372h%/(2mL?). As
L is a “manufactured” parameter (the length of the well) and any real quantum
well will not be “infinite”, the specific shape of the subband structure can be
engineered, depending on these geometrical specifications, as well as the type and
proportions of semiconductors used in their design. The fine-tuning of all these
parameters allows, in principle, for decreasing, increasing, or a mixture of both
kind of energy steps, making them good candidates for anharmonic dipoles in

cavity QED applications.

At this respect, the state-of-the-art in the design of these structures has reached
an impressive degree of sophistication, as it is well exemplified in, for example,
(Goulain et al., 2022). It is noteworthy to mention, also, that quantum wells
has been used as nonlinear wave-guides and source of second or third harmonic
generation due to their large high order susceptibilities (Ho et al., 1991; Sun et al.,
2007; Hao et al., 2008; Koren et al., 1987; Fox and Ispasoiu, 2017; Yildirim and
Tomak, 2006).

4.3 Quantum Model for anharmonic dipoles

We are in turn to introduce the model Hamiltonian that will be the center of all

the theoretical predictions of this thesis.

The correspondence rule allows to connect the classical harmonic oscillator
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Hamiltonian with its quantum version, as reads

Hiarm = % (% + mngz) — Hparm = fiwg (ZA)*ZA) + %) ) (4.3.1)
where © = ¢ — q. is the deviation with respect to the equilibrium coordinate g.
In general, the quadratic potential V(g — ¢.) o< (¢ — ¢o)? is seen as the quadratic
truncation of a Taylor series for a more general potential, and the consideration
of higher powers in the approximation is, for example, a regular approach in
the study of the vibrational dynamics of molecules (Venkatramani and Mukamel,

2002). For an individual oscillator, it is generally expressed as
V(g—q) =Y onlg—q)" (4.3.2)
k

It is expected that the inclusion of higher powers in the approximation for
the Hamiltonian will break the harmonicity of the energy spectrum, as the
only perfectly equidistant (and infinite) energy ladder comes from the harmonic
potential. This fact expresses the intimate connection between anharmonicity and

nonlinear behaviour in classical and also in quantum mechanics.

To give an example, the Morse potential (Morse, 1929), a well known model for
studying diatomic molecules, expresses the idea that if the oscillation has enough
energy, called dissociation energy D, the molecule will break (or “dissociate”) into

two separated atoms. It can be expanded in a Taylor series around x = 0:

2
VMorse(I') = De (1 —e Vv ke/QDeac) (433)

2 2/2 3 7k62 4

ke
2" "oy T wD”

- (4.3.4)

where k. the strength constant of the oscillator. Clearly, the quadratic truncation is
not enough to derive the point when the molecule breaks. However, if we decide to
explore small deviations from the harmonic regime, it is natural to characterization
of cubic or quartic-related Hamiltonians'. From this analysis we know that the
third power is only included if the nonlinear media is noncentrosymmetric, as they

are the only ones that breaks parity symmetry in the coordinates of the oscillator.

IThis is explained in a nice analysis connecting cubic or quartic perturbations of a quadratic
potential with second and third order susceptibilities in nonlinear media (Boyd, 2008).



4.3. Quantum Model for anharmonic dipoles 31

For the present analysis and forward, we will focus only on excitations in a
hypothetical centrosymmetric material although the model is able to include
higher order truncations, as is already documented in the literature (Piryatinski
et al., 2001).

4.3.1 Quartic Kerr Hamiltonian

We will review the implications of including a quantized nonlinear potential to
the harmonic Hamiltonian for a linear dipole of the form
hU

Vaw(z) = U: &t c(b+bht: (4.3.5)

4m2w3

The dimensions of the phenomenological parameter U are ML~2T~2. We do not

3 as we are assuming all the effects related can be neglected, as for

include an &
example the generation of second harmonics (Yildirim and Tomalk, 2006). We
express the potential in normal order as is documented in (Drummond and Walls,
1980b). Keeping only the terms that conserves the number of excitations, this

quartic term is expanded as follows
(b b1yt —» 5750+ B186TD + B10b6 + B5T01D + B0TBbT + BB, (4.3.6

The Hamiltonian then, by normally order and neglecting non conservative and

constant terms, is

H = hwob'b + RUB' bbb, (4.3.7)

where U = 3hU /(2m2w?). This equation has an spectrum that is expressed as
follows (setting A = 1)

E, = (v|H|v) = vwy 4 v(v — 1)U, (4.3.8)
= Au,ufl = wp + 2(1/ — 1)U, (439)

where A, ,_1 = E, — E,_; and the |v) are dipolar number states, which are

eigenstates of this Hamiltonian. There are two cases we want to differentiate:

e When U is positive, the spectrum has increasing energy transition steps.
The fundamental frequency is A; o = wp and the ground state is well defined
as By = 0.
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e If U is negative, we have decreasing energy transitions. In particular, we
noticed that this Hamiltonian is not bounded below, e.g. there is no ground
state as

lim £, - —o0. (4.3.10)

vV—00

To sort out this issue, we rewrite the Hamiltonian in a truncated form

. nax U
H =S B, v = {%UH'J . (4.3.11)
v=0

where we use the floor function |x| to specify that v can only take integer values.
We conclude that in order to describe quantum anharmonic oscillators with
decreasing energy transitions, the Hamiltonian in Kerr form just allows a finite

number of states v, + 1 in a consistent way.

4.3.2 Collective representation for N anharmonic dipoles

The generalization for N anharmonic dipoles from equation (4.3.7) is

straightforward, assuming that they are not interacting between each other:
Bnbn> . (4.3.12)

Let’s assume that all oscillators have the same frequency transition w, = wy and

anharmonicity parameter U, = U. By using the following basis representation

N N-1

~ 1 27 ~ A~ 1 27 A
By=—=) en,  b,=——9Y e ~"™B, 4.3.13
JN > ~ 8 ( )

B!B! B, Be(ap.)- (4.3.14)

where the index €(a, 3,1) = a +  — n(modN) of the last operator must to be

calculated using modular arithmetic >, modulo N.

Zhttps://en.wikipedia.org/w/index.php?title=Modular _arithmetic&oldid=1175659453. This also
ensures that the result obeys 0 < e < N — 1. To give examples, €(0,0,1) = —1(modN) =N —1
or (N —1,5,4) = N(modN) = 0.
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This representation using indexes 0 < a < N — 1 distinguish between degrees
of permutation invariance, from the most symmetric one (o = 0) to the less
symmetric (&« = N — 1). The eigenstates of the e = 0 operator, that we are going

to call as the bright operator, are

1 / k!
‘k’o> = \/m Z m‘m,...,mﬂ, (4315)

vi+...4+vn=k

and then Bl By|ko) = k|ko). In this notation, every |v,) is an eigenstate of the
n—number operator BILIA)n These states contains all the ways to put k excitations
in the N oscillators, including the cases of having more than one per site, arranged
in a permutation invariant form. From now on, Greek indexes will be used to

distinguish permutation indexes like v from site indexes like n.

There is a best suited form of the Hamiltonian Eq. (4.3.14) that reads

)y N-1 g Nl
_ U St A s U At A ot A
Hy = (wo +U N ;0: BBB/J’) Z B B. N ) 52 o B Be(a,pn) B By

(4.3.16)
It shows explicitly that there is a frequency shift generated by the way that the
bright and dark operators * are related to the population of the respective a—
collective modes. Moreover, this shift does not depend on « so it is equal for all

modes.

4.4 Equation of motion for the anharmonic dipole

We are going to use an open quantum system approach in the Born-Markov
approximation to study the dynamics of a single anharmonic dipole when the
interaction with the environment, as for example the wvibrations of the media
structure due to thermal fluctuations, is weak and memory-less. In general, we
expect that any effective dipole will dissipate energy in a similar way a cavity
with confined modes is coupled to the free EM field. The Master equation for an

anharmonic dipole (N = 1) in Kerr form is

d ~ " A o n
o= —ilH p] + 3 (2bpb' — {815, p}). (4.4.1)

3Let’s call dark operators to those related with the remaining N — 1 BLBQ number operators.
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where £, [p] = (7/2)(2bpbt — {b7b, p}) is the dissipator term in Lindblad form for
the dipole *. The equation for the dipole coherence expectation value (5), using

the Hamiltonian in Equation (4.3.14), is

d . s
—(B) = - (% i ) (B) + 20 (b5D). (4.4.2)
where we use the identity d(O)/dt = tr[Odp/dt]. In this equation, the cubic term

obtained present us two directions in order to solve the equation of motion:

e This equation will remain “linear” in the sense that we can calculate
d(bfbb) /dt for closing the system. However, as you can check, we are
going to find higher order correlations, and finally an infinite system of

equations. Then, this direction is non practical.

e The other way is to approximate higher order contributions like, for example,
by separating degrees of correlations. A simple statement of this approach
is, for example, to write (bTbb) = (b1)(b)(b)+ correlations avoided in the

preceding product version.

We will see how to do this second option in the next subsection.

4.4.1 Truncation schemes

The Cumulant expansion give us a tool to handle this problem (Sanchez-Barquilla
et al., 2020). For up to quartic products of operators, that is the limit for our
interest, it consists on using the following identities, (although it can be expanded

to arbitrary number of operators):

(AB) = (A)(B) + (AB)., (4.4.3)
(ABC) = (A)(B)(C) + (A)(BC). + (B)(AC).,
+(C)(AB). + (ABC)., (4.4.4)

4Remember that if this reservoir is in thermal equilibrium, in principle we expect not only
dissipation but also incoherent pumping, the last depending on the thermal mean number with
respect to the fundamental frequency of the system. However, at the frequencies of our interest,
the mean number of excitations at room temperature is negligible (See Table 3.2.1).
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where the expectation values (fl ..)e are the cumulant terms, encoding the

correlations neglected in the approximations.

When all the quadratic or higher expectation values are truncated to first order,
this is, by setting (AB)C ~ () and (ABC’>C ~ (), we say that we are working with a

mean field model.

The main results of this thesis are obtained from this mean field perspective, aiming
to show that this first approximation captures the key features of the nonlinear
problem, as we only need that the anharmonic of matter could be transferred
coherently between oscillators. The second order approach goes beyond the scope
of this work, however we include the explicit expressions for the second order

equations in Appendix Al.

4.4.1.1 Mean Field approach

In this case, Equation (4.4.2) is approximated to

%@ - (% + "'W0> (b) + 22U ()" (b) (), (4.4.6)
- <% + iw@) (b) + 22U |(b) 1 (b), (4.4.7)

This result is known as the Stuart-Landau equation (Stuart, 1958; Panteley et al.,
2015). As this oscillator is decoupled from the other ones, this equation is closed

and it has analytical solution. To derive it, we use the polar representation
<[;> = b(t)e™) with b(t) = |<l;(t))| We have that

d Y — 2
00 = =50() = b(t) = boe ™", (4.4.8)
iqﬁ(t) = —wp + 2U(b(t))* = —wp + 2Ubze . (4.4.9)
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Figure 4.4.1: Mean field solutions for the real and imaginary parts of the complex anharmonic
coherence in the rotating frame of the dipole (f))@i‘“ot and their respective phases in time for
two initial cases: (a) and (b) correspond to set (b(0)) = 1, (c¢) and (d) correspond to set
(b(0)) = 2. The colors in the four plots represents the harmonic case (U/y = 0, black lines) and
two anharmonic cases (high anharmonic ratio U/y = 2, blue lines, and low anharmonic ratio
U/~ =1/2, red lines). Dashed lines in plots (b) and (d) indicates the steady phases ¢ss, in each

case.

where by = b(t = 0) > 0. The exact solution is

(b)) = bo exp {— (% + iw0> t+ iQI{ng (1— exp(—’yt))} . (4.4.10)

The exponential times the imaginary number ¢ = y/—1 inside the expression above
is a nonlinear time-dependent phase term of the complex coherence, that we label

as reads
ONL(t) = dss(1 — exp(—nt)), (4.4.11)

stating a steady value that we call ¢ = 2Ub%/v that converges with twice
the decay rate of the coherence amplitude o exp(—~t/2). Notice also that the
behaviour of this amplitude does not depend on U, only relying on its initial

condition.

In Figure (4.4.1) we show the evolution of this coherence with respect to three
anharmonic cases (U = 0, U = 27y and U = ~v/2) and two initial conditions
considering, two different coherent states with a = 1 or a = 2.(and then by = 1 or

by = 2). We plot the linear case (U = 0) with black lines, showing that the linear
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coherence does not change its initial complex phase, and then the dynamical phase
for U > 0 is an exclusive result of the anharmonicity and nonlinearity present.
Summarizing, the mean field approach contains the basic mechanism to generate
nonlinear phase modulation when the anharmonic dipole is initialized at some
quantum excited state, that increases with the amount of anharmonicity encoded

with the anharmonic ratio U/~.
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Chapter 5

Results

5.1 Preliminar words

We already have the minimal theoretical background, presented in the previous

chapters, to introduce the main results of this thesis. These results are divided in

two parts:

e First, we show how our quantum model proposal reproduces an experimental

demonstration of the Purcell effect (Purcell et al., 1946), by using the free
induction decay (FID for short) of a driven organic nanoantenna in the
mid-infrared regime (Triana et al.; 2022). Moreover, we obtain a formal
derivation of the Purcell factor and the consequent diminution of the dipole
dephasing time reported in (Metzger et al., 2019), where the only free
parameter obtained by fitting —the light-matter coupling strength ¢— is in

agreement with the weak coupling regime of the nanophotonic setup.

Second (and the core of our work), we show that our model predicts strong
nonlinear effects when the material Hamiltonian is expanded beyond the
harmonic potential to consider the anharmonicity of the material dipoles
inside the cavity /resonator (Arias et al., 2023). Depending on the driving
conditions, this system manifests a crossover from linear response — when
it is driven by weakly enough sub-picosecond THz pulses— to an emerging
nonlinear response when the dipoles reach higher excitation levels that are

detuned from the fundamental transition.
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Our semi-empirical model considers realistic values for all the frequencies (and
energies) involved, and the fundamental dissipation channels for both cavity and
material dipoles are inserted as parameters in a Master equation in Lindblad form,
that are extracted from the empty cavity and bulk spectroscopic measurements.
The material dipoles considered in the first stage of validation are specific vibrations
of a carbonyl bond present in an organic polymer of Poly(methyl methacrylate), or
PMMA for short (Stolz et al., 1962; Kulkeratiyut et al.; 2006). Those vibrations
are treated as identical and non interacting harmonic oscillators weakly coupled
to a subwavelenght metallic, mid-infrared resonator cavity mode, in complete

resonance.

Regarding the second main results, the inclusion of an anharmonic spectrum just
for the material dipoles make our model nonlinear, in the sense that the coupled
light-matter system shares this property coherently and dynamically, producing
a time evolution in the electric field and polarization of the media that can be
clearly distinguished from a typical linear response, as we are going to show
in the corpus of this section. For this results we consider an inorganic cavity,
instead of the PMMA vibrations, made from a Multi-Quantum Well with input
parameter values similar to those used in (Mann et al., 2021). The advantage
of these inorganic semiconductor structures is the possibility to confine a small
number N of anharmonic dipoles, counteracting the dilution effects present in
organic cavities that screen their anharmonic properties due to the size of the

usual molecular ensembles used.

We notice that, independent of the fact that the cavity is modeled as a harmonic
oscillator, the coupled system presents a nonlinear response, captured from the
evanescent electric field of the nanostructure by using near-field probes or nanotips
(Hermann and Gordon, 2018) '. This technology allows to achieve the sub-
picosecond time resolution necessary to distinguish the nonlinear and transient
time delays imprinted in the free induction decay of a signal, generated with highly
enough incoming driving pulses, when compared with the linear frequency-locked

electric signal expected in weak driving conditions for the same setup.

We coined the term of chirping effect, as we derive an analytical instantaneous

dipole frequency wj(t) depending on the mean number of the dipoles excitations

IThis is actually the technology used in the measurement of the Purcell effect in organic cavities
using PMMA, published in Triana et al. (2022).
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in time. This dependence generates a red-shift from the resonant fundamental
transition, shared by the cavity and the dipoles, that grows with the mean

population of the third energy level and is coherently transferred to the cavity
field.

5.2 Purcell effect with pulsed mid-IR organic

resonators

5.2.1 Light-matter linear model

As is usual in cavity QED, we model the empty cavity system as a single quantum

harmonic oscillator of fundamental frequency w..

The free Hamiltonian for the isolated single cavity mode then is (fixing A = 1)
H, = w.ala. (5.2.1)

where @ is the annihilation operator of the cavity field and we omitted the vacuum

energy as we are interested only in energy (or frequency) transitions *.

For the dipolar oscillators, we model them as a collection of N bosonic quantum
oscillators that, in order to describe linear response experiments in a weak driving
condition |Fy|/k, we approximate their confinement potential to a quadratic form
around an nuclear equilibrium position. The Hamiltonian for one vibrational

quantum oscillator reads

. . H2 1 A
T+ Vi(q) ~ 22 1 w2, = hwy (bh, +1/2). (5.2.2)
2m 2
Here, T, and Vn(q) are the kinetic and potential energy curve for the n-th dipole,
the operator b, is the annihilation operator of the anharmonic dipole n and w, is

the fundamental frequency of the n-th oscillator.

The light-matter system Hamiltonian consists in a collection of N independent

harmonic dipoles coupled to a single mode of a cavity QED with a coupling

2Although in general we expect a highly structured energy spectrum for a cavity, we can in
principle design a particular geometry of a cavity with an appropriate finesse to isolate just
one mode from the full spectrum and also to tune that mode to be in close or exact resonance
with the material oscillators inside the resonator.
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strength per site g,. The Hamiltonian considering the free and interaction terms

for the light-matter system, in the rotating wave approximation °, is

N N
Hy = weala+ Y wiblbn + > gnl(alb, + bla). (5.2.3)
n=1 n=1
The role of relaxation and driving to the system is accounted in a Master Equation
in the Lindblad form for the reduced density operator of the hybrid system pg

which reads

Here, the L operators are expressed in the usual Lindblad form:

La = 2apsa’ — alaps — psa'a, (5.2.5)
L;, = 2bapsbl, — bl bups — psbib. (5.2.6)

For the cavity, the effect of dissipation due to population and coherence losses is
accounted by the coupling with the infinite modes of the free electromagnetic field,
in a perturbative approach allowing to encode the environment influence with the
cavity decay rate parameter x *. For the dipoles instead, the main dissipation
channels are non-radiative, related with phonons generated in a disordered media
at thermal equilibrium, that in general are local and here we parameterize with

the decay rates 7.

Also, we introduced the time dependent driving Hamiltonian ]:Id(t), which is
simply a classical coherent driving field incoming to the resonator structure. Its
explicit form reads

Hy(t) = Fy(t)(ae™ + afemiwaty, (5.2.7)

where Fy(t) = Fop(t), ¢(t) is the envelope of the driving pulse, Fj is related to the

incoming photon flux ®g,, o< |Fy|?, and wq is the carrier frequency of the laser.

30r RWA, for short. This approximation in general is broken for strong, ultra-strong coupling,
or other more complex regimes (Milonni et al., 1983; Fleming et al., 2010).

Here, however, we are only interested in a weak coupling scenario, justifying our approach.
4This parameter is obtained from the spectroscopic signatures of the empty cavity in reflection

or transmission experiments by taking the Full Width and Half Maximum FWHM of the

corresponding resonance peak, which is generally fitted with a Lorentzian function.
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5.2.2 Homogeneous ansatz

In the ideal case of identical dipole oscillators, equally coupled to the cavity field,

the expression of the Hamiltonian is simplified:

N N
Hy = weila+wo Y blba+9> (@b, + bla). (5.2.8)
n=1 n=1

By changing to the collective dipolar basis, the Hamiltonian will look like

N-—1

Hy =weila +wy Y BBy + VNg(al By + Bla), (5.2.9)
a=0

= w.ila + woBi By + VNg(a' By + Bla), (5.2.10)

where the last congruence relationship is exactly valid when all the dark states

are not initialized (Bao) = 0, as the EM field only couples with the bright state
(Bo).

Moreover, the Lindblad term related to dipole losses, when we fix ~, = v for all

the IV dipoles, can be rewritten as reads

=2

-1

(2Baps Bl — BlBaps — psBLBa) (5.2.11)

BO |2

N ~
> L 1] =
n=1

b2

i
o

From all these equations it is crystal clear that the dark modes ar # 0 are completely
decoupled, as for the dipole approximation considered (g, = ¢ for all dipoles), the
cavity field will couple only with the bright mode v = 0. Then, it is justified the

use of the following reduced version of the Hamiltonian:
Hy = wed'a + woBi By + VNg(a' By + Bla). (5.2.12)

and the following shape of the Master equation

d . N A .
—ps = —i[Hy + Ha(t), ps| +

" Lalps) + 2L, [ps), (5.2.13)

K
2

where ,CABO [ﬁs] = QB(),@S'BS - Egéoﬁs - ﬁSBgBO
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Figure 5.2.1: Vibrational Purcell effect. (a) Field detection scheme for the PMMA-
coated nanowire with the nanoscale local probing at the wire terminal, using the following
parameters {wy, k/27,7v/27,vV/Ng} = {51.9,15.6,0.510,1.24} THz. (b) Pulse-driven resonator
field Re[(a(t))] measured in Ref. (Metzger et al., 2019) for a resonant molecular vibration—antenna
system (wy = we). The measured lifetime of the FID signal is T5 5 = 345 £ 10 fs (boxed region,
inset). (c) Simulated collective molecular coherence Re[(By(t))] under equivalent conditions as
in experiments with dephasing time 75 5 = 347 fs for V' Ng = 1.24 THz, where the free space
dephasing time is T5 , = 624 fs. We predict an enhanced vibrational decay rate of 4/27 = 0.917
THz.

5.2.3 Purcell renormalization factors

We apply our formalism to reproduce the field detection done in a PMMA-coated
nanowire captured with a nanoprobe, as it is shown schematically in Figure (5.2.1-
a). The cavity was driven with a Gaussian pulse with carrier frequency wq = 51.9
THz in resonance with the coupled cavity-vibrational system, and the temporal
center and duration where ¢ty = 600 fs and T" = 155 fs, respectively. We neglected
the tip field influence into the cavity plus vibrations system, as typically these
nanodevices are broadband compared with the probed device and their effect can

be neglected depending on the lifetime relations between subsystems °.

The system of equations for the homogeneous light-matter system coherences,

consisting in the cavity single mode plus N vibrational excitations, is

%@) = — (5 i) (@) — iVNg{Bo) — iFult), (5.2.14)
%(é()) = - (% + z'wo) (Bo) —iV'Ng(a), (5.2.15)

where Fy(t) = Fye ™atp(t). This is exactly solved by applying the Fourier

5A more detailed theoretical exploration of the inclusion of the tip dynamics is done in (Triana
et al., 2022), showing coherent tip-induced phase-space rotations depending on the horizontal
position of the tip, and a crossover from weak to strong coupling by the tuning of the vertical
position of the tip, with respect to the antenna layer.
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Figure 5.2.2: Purcell-enhanced dipole decay rate 4 with respect to v Ng and & for fixed
free-space dipole decay v = 0.6 THz. (a) Color plot showing a diagonal threshold between the
strong coupling hybridized light-matter decay rate (upper left) and the weak coupling dipole
decay rate (lower right). (b) Comparison between the exact value of 4 (thick lines) and the
adiabatically obtained dipole decay rate (dashed lines) for three different values of the collective
coupling v Ng. These three cases correspond to the three dashed white lines in plot (a). The
fixed decay rate 7y is represented with a dot-dashed blue line.

Transform to the complex coherences of the system:

~ 1 > ~ iwt ® _ 1 * A jwt
(@) = o= / at)eat (o)) = = / By,

and formulating the corresponding algebraic system from Eqs. (5.2.14-5.2.15).
In the resonant condition w. = wq = wy, fixing k > 7 for a bad cavity, and by

considering a weak coupling case stated by the relation

Ik —~|/2 > 2V Ny, (5.2.16)

we find that the response of the oscillators present the renormalized decay rates

as reads
_ K+ K v+ 20
= I'y==-(14+—=2 5.2.17
Kk 2 + g 2 < + K ) ( )
. K+ ¥ k —2I
= —-I'y==(14+ ——= 5.2.18

2

where we define I'y = \/(ﬂ)2 — 4N g2

Notice that the condition Eq. (5.2.16) delimits a threshold between weak coupling

—characterized by a decay renormalization for both oscillators— and strong coupling,
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showing the hybridization into a common decay rate, equal to the mean value
(v+r)/2°

Complementary to these results, we find also a good approximation for the
renormalization of the material decay rate in the bad cavity regime where x > ~.
Let’s define the slowly varying coherences, in exact resonance, as a(t) = (a(t))e™ot

and By(t) = (By(t))e™!. Now, the system of equation is rewritten as

d ~

= —ga — iV NgBy — iFpp(t), (5.2.19)
d - 3
+Bo= —%BO —ivNga, (5.2.20)

We make the adiabatic approximation for the free induction decay (p(t) ~ 0) by
imposing da/dt = 0. We obtain a renormalized equation of motion for the dipole

coherence by replacing ag = —i(2\/ﬁ g/ I{)BO in the equation for BO, that reads

d -~ ¥ 4Ng2 -
—Byr~ —= |1 B 5.2.21
dt° 2 < * Ky ) 0 ( )

In this manner we obtain an approximation for the Purcell factor 1+ 4Ng?/ (k)
in the adiabatic case for a bad cavity. As the decay offset is high, in principle it is
expected that the long lived dipole excitation transfers coherently into the free
induction decay of the cavity near field in the form of beatings, from which the
enhanced decay rate 7, and the corresponding shorter dephasing time 75 5 = 2/7,
can be fitted from the envelope of the electric field amplitude. The comparison
between the experimental fit and the reproduction of this result by using our
simulation is showed in Figures (5.2.1a-b), as it was done successfully in (Metzger
et al., 2019; Triana et al., 2022).

Furthermore, we show in Figure (5.2.2) a color plot of the Purcell-enhanced dipole
decay rate 4 > ~y for the fixed free-space value v/271 = 0.6 THz with respect to
different choices of the collective light-matter coupling v Ng and cavity decay
rate x, and considering values in the range of few THz, for applications in the
mid-infrared. Also, in figure (b) we compare the renormalized dipole decay rate
Eq. (5.2.18) -plotted with solid lines— with respect to the adiabatic approximation
of the Purcell-enhanced decay rate Eq. (5.2.21) —with dashed lines— showing good

%Notice also that if the inequality does not hold, the factor I'y becomes an imaginary number.
It can be proven that this imaginary number contributes to the frequency splitting in the
spectrum of the coupled oscillator, that is the signature of the strong coupling regime.
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Figure 5.3.1: Empty cavity mean photon number comparison between a continuous driving
(CW, blue lines) and two finite pulses with Gaussian (orange dashed) and an a step function
envelope (green dotted) with decay rate k = 15.6 THz, Fy = 0.5k and complete resonance
between the cavity mode and the carrier frequency wq = w.. The four images represent 4
different time durations of the Gaussian pulses centered at to = 2.0 ps: (a) T = 0.039 fs, (b)
T =0.1551fs, (¢) T = 0.310 fs and (d) T = 0.620 fs. The time duration of the step function
is fixed as Tstep = V27T in order to have the same normalization of the Gaussian pulse with
duration 7.

agreement for sufficiently high cavity decay rates k 2 15vy. The peaks present
in the right panel, and the subsequent straight lines for lower k, correspond to
the cases where the combination of parameters goes beyond the weak coupling
regime, where we expect generation of polaritons. These polaritons are hybrid,
non-separable excitations, that presents a decay rate equal to the mean value of
the free-space decay rates from both cavity and material dipoles, as it can be seen

also from the left panel (a), in the upper left part of the diagonal crossover line.

5.3 Nonlinear dynamics in weak coupling

The previous linear response theory relies in a weak driving condition parameterized
with |Fy|/k < 1. This condition conjugates with the chosen time duration

T ~ 150 fs of the driving pulses, that is much shorter than the characteristic
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cavity decay time 1/k < T'. Our case scenario k/w. ~ 0.3 is representative of open
nanoresonators in the THz as the reported in (Metzger et al., 2019), translating
in photon lifetimes of the order of a few femtoseconds. Controlling all these
conditions ensures that the vibrational ladder climbing do not going beyond the
desired level over a pulse duration. Obviously, for the harmonic approximation,
this limit is the first excited state with v = 1.

If it is also the case that the second or higher excited energy levels are detuned
with respect to the fundamental transition, accessing them necessarily will break

the harmonic approximation.

The intrinsic anharmonicity of vibrational dipoles typically varies in the range of
0.3-1.2 THz for polyatomic molecules (Fulmer et al., 2004; Grafton et al., 2021),
and they manifest as smaller energy spacing between subsequent energy levels,

compared with the fundamental transition.

We will show that our model is able to treat organic cavities as the
PMMA /resonator mentioned in the previous chapter, and also inorganic
heterostructures as multi-quantum wells in cavities as anharmonic dipoles. These
devices are designed to obtain specific spectroscopic features and, where the
number and shape of the charge carrier subbands are built for the requirements
of the consumer. The advantages with respect to organic cavities is clear when
we notice that we can putt a small number N of quantum wells inside a single
MQW, and also because they can be manufactured with higher anharmonicities
(U, ~ 3-9 THz) than the previously reported organic molecules (Mann et al.,
2021).

5.3.1 Antenna-Vibrations

The Born-Oppenheimer potential is frequently used to describe the potential
energy of chemical bonds fluctuating around an equilibrium bond length ¢, that

reads
V(g—qe) = > ailg —q)". (5.3.1)

Minimal models using up to quartic nonlinearities (kyax = 4) for parity symmetric
potentials (for which the k& = 3 term is neglected) have been used to study

nonlinear vibrational spectroscopy (Piryatinski et al., 2001; Venkatramani and
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Mukamel, 2002; Saurabh and Mukamel, 2016), and in particular in the context of

vibration strong coupling in Fabry-Perot resonators (I'. Ribeiro et al., 2018).

An important feature we want to capture from these nonlinear models is the
reduction of the energy spacing between subsequent energy levels. This difference
is present in the energy gap Ag; between v = 1 and v = 2 levels, compared with

the fundamental transition at frequency w, > Ay /A,

We use the harmonic oscillator operators to write the vibrational potential in Kerr

form

~

Ty, 4 Vi, & wibl by, — UL bbb, (5.3.2)
where U = |Ag /2.

The light-matter dynamics is simulated by solving the quantum master equation
in Eq. (5.2.13) together with the minimal anharmonic Hamiltonian in Eq. (5.3.2)

for N identical molecules. The mean field equations of motion for the cavity and

collective vibrational coherences read as

%@) _ (g + iwc> (@) — iVNg(Bo) — iFpp(t)e ™, (5.3.3)
By = — (L + i) (Bo) — iv/Nofa) (5.3.4)

where we have defined the instantaneous frequency

1) = o — 2 Bo() P (5.3.5)

and we have chosen the single-molecule Rabi frequency g, the local vibrational
relaxation rate v, and the cavity decay rate x to be the same as in the linear

response theory developed in the previous section.

5.3.1.1 Anharmonic Blockade Effect for Strong Pulsed Excitation

We can simulate the coupled light-matter dynamics of anharmonic vibrations
coupled to an infrared resonator, by solving the system of equations (5.3.3-5.3.4)
for a system of N molecules. The single-molecule Rabi frequency g, the local
vibrational relaxation rate vy, and the cavity decay rate x, are set to be the same
as in Fig. (5.2.1), and then the system is also in weak coupling. For a driving

strength parameter Fy/k 2 0.6, we numerically compute the evolution of the
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Figure 5.3.2: Evolution of the real part of the system coherences for N = 2 anharmonic
vibrations (U = 20 cm~!) subject to a single 155 fs pulse centered at 600 fs with driving strength
parameters Fy/k = 0.6 (blue solid line) and Fy/k = 0.01 (orange dashed line). The set of
parameters chosen was similar to the used in Figure 5.2.1. The delay d7 between the weak and
strong field responses is highlighted. (a) Evolution of the cavity coherence Re[(a@)]. The green
dashed box is shown magnified in (b) to appreciate the FID signal after the pulse is over. (b)
Evolution of the dipole collective coherence Re[(B(;)]. The green dashed box is shown magnified
in (d) to appreciate the FID signal after the pulse is over.

collective coherence (By(t)) by integrating the equations of motion in the mean

field approach.

In Fig. 5.3.2 we plot the evolution of Re(a(t)) and Re(By(t)) for N = 2 and
Fy/k = 0.6, obtained as described above (solid line). We also show the response of
a coupled system driven by a pulse that has the same normalized temporal profile
(to = 600 fs, T" = 155 fs), but is much weaker (Fy/k = 0.01, linear response).
Resonant coupling and driving is assumed (w, = w, = wq) and the single molecule

nonlinearity parameter is U = 20 cm ™.

The strongly driven signal develops
a time delay d7 of a fraction of a cycle relative to weak driving (boxed green
rectangles in (a) and (c), magnified in (b) and (d)). This delay builds up gradually

while the pulse is on and remains relatively stable after the pulse is over. The
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Figure 5.3.3: Time delays with respect to different set of parameters, but fixing {w,, k/27} =
{51.9,15.6} THz. (a) Time delay ratio calculated as the time difference between peaks and
dips of the material collective coherence (dashed lines) and cavity coherence (empty circles)
for different decay ratios k/7, keeping x/2m = 15.6 THz fixed. Dotted line corresponds to the
Gaussian pulse envelope ¢(t) with temporal width 7. The time delays derived from the cavity
coherence are plotted from ¢ = 1.1 (ps) as they stabilize after the appearance of beatings around
~ 0.85 (ps). (b) Time delay ratio calculated as the time difference between peaks and dips of
the material collective coherence (dashed lines) and cavity coherence (empty circles) for different
coupling ratio v Ng/w,, keeping v/ Ng/2m = 1.24 THz fixed.

vibrational decay time (T%,) does not depend on the pulse strength’.

Figure 5.3.3-a shows the evolution of 47 for four scenarios, fixing the value of
k/2m = 15.6 THz. For long dipole lifetimes, for example (k/y = 40.0), i.e.,
narrowband vibrational dipole response, the time delay of the FID signal remains
stable after the driving pulse is over, becoming more and more higher for sharper

dipole bandwidths. On the contrary, when (k = 7.57) the time delay lowers from

It is noteworthy to mention that in a linear FID in weak coupling, due to the decay offset present
(k/v = 30.6) we expect beatings in the cavity coherence due to the coherent signal transfer
from the material dipoles, as we can see from Fig. 5.3.2-(a) for the weak driving condition
Fy/k = 0.01. However, this behaviour is not present in the nonlinear case (Fy/k = 0.60).
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Figure 5.3.4: Stationary time delay, calculated at t = 2.5 (ps), with respect to N, and
considering the set of semi-empirical parameters {w., k/2m,v/27,v/2g} = {51.9,15.6,0.510, 1.24}
THz.. As is clearly noticed, the dilution effect for larger N makes any nonlinear effect, as this
time delay, negligible.

a maximum value after the pulse ends. The system thus requires long dipole
dephasing times to imprint a stationary time delay in the near field once the

driving pulse is turned off.

We also include the case for variations in the collective light-matter coupling
V/Ng. Figure 5.3.3-b have for four scenarios. For high light matter coupling
respect to the frequency (v Ng/w, = 53), the time delay of the FID signal has a
similar behaviour than the lower decay ratio, this is, after reaching a maximum,
it stabilizes in a lower value.. On the contrary, when (\/N g = 20wy ), is maximum,
showing that we need to be immersed in weak coupling the most we can in order

to achieve higher time delays.

This consideration can be correlated with the results of the Purcell enhancement
in Figure 5.2.2. The effective vibrational decay rate decreases for lower coupling
strengths ¢ and higher cavity decay rate x. This ratifies that it is required long
dipole dephasing times, in this case the enhanced dephasing time, to imprint a

stationary time delay in the near field after the pulse is off.

Although we predict appreciable time delays, for feasible optical and material
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bandwidths, and single coupling strength, the values chosen for N are just a “proof
of principle™ realistic values for PMMA are reported to be close to N ~ 103
(Metzger et al., 2019). In Figure 5.3.4 we capture this dilution effect in the
stationary value of d7/Tp for increasing number of dipoles N in the ensemble.

For N ~ 102, this effect is almost negligible for the set the parameters chosen.

More realistic candidates for the set of parameters used are MQW’s (Mann et al.,
2021), as these structures can accommodate a smaller number of effective dipoles
(N = 26) and also presents higher anharmonicities, that can be also engineered
depending on the experimental requirements, allowing for much more flexibility

than organic infrared cavities like the referenced here.

5.3.2 Antenna-MQW'’s

As we mentioned before, MQW’s in resonator or cavity setups allows for more
flexibility in the choose of optical and material parameters, as well as sufficient
small N effective dipoles to counteract the dilution effect present in organic cavity
QED.

In Figure 5.3.5 we show the effect on different anharmonicity and driving conditions
for a open mid-infrared nanoresonator (the “cavity”) containing a hypothetical
MQW with two identical quantum wells inside (N = 2), which is much more

feasible on modern nanophotonics implementations (Mekawy and Alu, 2020).

As we mentioned before, the Kerr nonlinearity of our anharmonic model generates

an effective dipole chirping effect, with instantaneous frequency wy(t).

This is red shifted from the fundamental resonance by an amount proportional
to the bright mode occupation |(Bo(t))|?, in our mean field approach. The
nonlinearity is proportional to the anharmonicity parameter U and is small for
large N (Triana et al., 2022). The transient red shift occurs while the system is
driven by the laser pulse, which populates B, (), and is thus proportional to the

photon flux parameter Fj.

As we can see from the figures, the time delay 07(¢) generated grows in a nontrivial
way with the anharmonicity, parameterized with U/, and the driving condition
Fy/k. What is clear is that for our choice of parameters, this time delay reaches a

stationary value 7.
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Figure 5.3.5: Dimensionless time delay 7/T; (solid lines with circles) and instantaneous
frequency w{(t)/wo (thin lines with the same color structure) considering N = 2, for four
different driving conditions Fy/k = (0.3,0.6,1.2,2.4) and four anharmonicity conditions U/vy =
(0.25,0.50, 1.0, 2.0), considering the set of semi-empirical parameters {wy, x/27,v/27,v/Ng} =
{40.0,12.0,0.6,1.00} THz, intimate relationships with those used in (Mann et al., 2021). (a)
Curves considering Fy/k = 0.3 (b) Curves considering Fy/k = 0.6 (c) Curves considering
Fy/k = 1.2 (d) Curves considering Fy/k = 2.4.

The nontrivial behaviour of our system is evident for higher driving ratios (figures
5.3.5 ¢-b), as a higher anharmonic condition not necessarily will bring a higher
stationary time delay. Also, there is an apparent saturation point where no matter
how much we increase the driving intensity, the time delays obtained will not go
higher. Instead, they will show a fluctuating behaviour before reaching a possible
lower stationary value than the peak of the curve, possibly connected with the

oscillations in the instantaneous chirping frequency plotted above.

In Figure 5.3.6 we increase the number of anharmonic dipoles to N = 16, using
the same set of parameters from Figure 5.3.5, in order to catch the dilution
effect onto the anharmonicity (U/N) as well as on the collective light-matter
coupling v/ Ng. As the chirping effect falls with 1 /N, it is not strange that higher

driving intensities will be required to reach higher time delays (67/7y ~ 0.4 for
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Figure 5.3.6: Simulations for a Multi-quantum well, containing N = 16 quantum wells,
of the dimensionless time delay 67/Ty (solid lines with circles) and instantaneous frequency
w((t)/wo (thin lines), for four different driving conditions Fy/x = (0.3,0.6,1.2,2.4) and four
anharmonicity conditions U/y = (0.25,0.50,1.0,2.0), considering the set of semi-empirical
parameters {wy, /27, v/27,v/Ng} = {40.0,12.0,0.6,1.00} THz. (a) Curves considering Fy/k =
0.3 (b) Curves considering Fy/k = 0.6 (¢) Curves considering Fy/x = 1.2 (d) Curves considering
Fo/r = 2.4.

Fy/k > 2.4). However, the stationary time delays expected are almost zero, even
when its evolution reached transiently a high value close to the width of the
driving pulse ¢t _T' <t < ty + T. This can be explained, as we did with the case
of organic vibrations in a cavity QED, by the effective bandwidth relationships
between cavity and dipoles in weak coupling. The effective dipole decay rate is
changed drastically by the influence of the collective light-matter coupling v Ng
and the cavity decay rate k, as you can check from Equation (5.2.18) and Fig.
5.2.2. Then, in order to have a lower dipolar decay rate, and in consequence a
sharper material spectrum with respect to the cavity bandwidth, we can decrease

the light-matter coupling keeping « fixed.

As we expect, a lower enough light matter coupling will make reappear the

stationary time delays that vanished for the dilution mechanism. In Figure 5.3.7
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Figure 5.3.7: Simulations for a Multi-quantum well, containing N = 16 quantum wells
but with half the coupling strength than in Figure 5.3.6, of the dimensionless time delay
01 /To (solid lines with circles) and instantaneous frequency wy(t)/wo (thin lines), for four
different driving conditions Fy/k = (0.3,0.6,1.2,2.4) and four anharmonicity conditions U/y =
(0.25,0.50, 1.0, 2.0), considering the set of semi-empirical parameters {wy, x/2m,v/27,v/Ng} =
{40.0,12.0,0.6,0.50} THz. (a) Curves considering Fy/x = 0.3 (b) Curves considering Fy/x = 0.6
(¢) Curves considering Fy/k = 1.2 (d) Curves considering Fy/k = 2.4.

we show the simulations for a MQW of N = 16 anharmonic dipoles but now
considering half the single light-matter that in the previous simulation. We see
that the stationary values for the delay emerge again although they never go
higher than 67/7 =~ 0.5 even for ultra hight driving conditions (Fy/x = 2.4).

To have a physical intuition about these results, we solve Egs. (5.3.3) and (5.3.4)
analytically to gain insight on the chirping effect. We assume that the bandwidth
of the dipole resonance is much smaller than the antenna bandwidth, i.e., Kk > ~
(k/7 = 20 for our numerical simulations). By adiabaticaly eliminating the antenna
field from the dynamics, the evolution of the bright mode after the pulse is over is

given by

A

(Bo(t)) = Byge™ 3 tomid® (5.3.6)
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where t.g¢ is the pulse turn-off time. The phase evolves as

2U B
N7

O(t) = domr + {1 - e ttom)] (5.3.7)
where 7 = (1 +4Ng?/r7) is the Purcell-enhanced dipole decay rate, as we found
in the linear response sceneario Eq. (5.2.21), and Bog = |(Bo(teg))|. Defining
T =t — tof, in the long time regime, 74 > 1, Eq. (5.3.7) gives the stationary

relative phase
2U B
Ny’

which depends quadratically on the laser strength, through the implicit linear

A¢SS = Cbss - ¢OH = (538)

dependence of B,g on Fy. The derivation of Eq. (5.3.7) can be found in Appendix
A2. In the limiting cases of harmonic oscillators (U = 0), thermodynamic
limit (N — o00), or linear response (Fy/k < 1), the relative phase is negligible
(Ag¢gs =~ 0). Molecular ensembles have low anharmonicities, and have been shown
to require higher pulse strengths to produce finite relative phases Triana et al.
(2022) than the ones discussed here.
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Chapter 6

Conclusion

6.1 Conclusions

In this thesis, we described a novel dynamical photon blockade mechanism in
THz cavity QED that can be used for imprinting power-dependent phase shifts
on the electromagnetic response of a coupled cavity-dipole system. We develop
analytical quantum mechanical theory to model free-induction decay signals of
a pulse-driven cavity system, using parameters that are relevant for quantum
well intersubband transitions in mid-infrared resonators (Mann et al., 2021), as
well as for molecular vibrations in the mid-infrared regime. For N quantum wells
within the near field of the driven resonator, the theory shows that using only
a moderately strong pulse that drives a small fraction of the intersubband level
population to the second excitation manifold, a stationary phase shift proportional
to the spectral anharmonicity parameter U/N+~ and the photon flux of the pulse,
can be imprinted on the FID response of the near field, which can then be
retrieved using time-domain spectroscopic techniques (Wilcken et al., 2023). For
experimentally relevant system parameters, nonlinear phase shifts of order of 1
radian are predicted for a small number of dipoles like two molecular vibrations
or two quantum wells embedded in a MQW, using single sub-picosecond pulses of

few W power.

The predicted phase nonlinearity can be physically understood as a result of
laser-induced dipole effect that dynamically detunes the cavity field with respect

to the 1 — 2 dipolar transition, caused by population driven between the first
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and second excited levels of the anharmonic material spectrum.

Our work demonstrates the feasibility of implementing nonlinear phase operations
at THz frequencies using current available nanocavities (Mann et al., 2021;
Metzger et al., 2019; Wilcken et al.; 2023) and contributes to the development of
quantum optics in the high-THz regime (Goulain et al., 2022; Benea-Chelmus et al.,
2019), which can enable fundamental studies of cavity quantum electrodynamics
(De Liberato, 2019; Wang and De Liberato, 2021), material and molecular
spectroscopy (Kizmann et al., 2022; Wilcken et al., 2023; Bylinkin et al., 2021),
and controlled chemistry in confined electromagnetic environments (Nagarajan
et al.,, 2021; Ahn et al., 2023). Extensions of this work to the analysis of THz
and infrared pulses with non-classical field statistics (Waks et al., 2004; Zhu
et al., 2022) could open further possibilities for developing ultra-fast quantum

information processing at room temperature.
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Appendix A

Test

A1l Second order cumulant approach

The second order approximation is done by setting

(Blbnbn) = [(b)*(bn) + (ba)*(Bubu)e + (ba) (Bbn)e + (b} (Bhbn)e + (B bnby)e.
~ <|<?3n>!2 + 2<525n>c) (bn) + (bubn)e ()", (AL1)

where we approximate (Z)Li)ni)n)C ~ 0. The equations of motion for the quadratic

terms are

d - - . - - _
a<blbn> = _7n<b;rzbn> = <b;rzbn(t)>c = <biw,bn(0)>ce nt (A1-2>
(bubn) = —(n + 12w ) (bpby ) + 12U, (b bbby ) + (bybl byby)), (A1.3)

= — (Y + 12(wy — Up))(buby) + 34U, (b bbby, (A1.4)

where we use the identity (bub!b,b,) = (bib.bub,) 4+ (bpb,). For the quartic
operator in the second equation, we expand it and also neglect quartic and cubic
cumulants ((ABCD), ~ 0 and (ABC), ~ 0) to give

(A1..5)
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The closed system of equations obtained is
d 7 Tn . 2
o) = = (B +iwn ) (ba)
820, ({160n) 2 + 200 5n)e f (bd + (Bubudetbn)) . (AL6)

<Bn6n>c = _(Wn + i2(wn - Un))@ni)n)c

ol
-+

Several nonlinear terms are spread among these three equations of motion. The
numerical results for the evolution of the slowly varying dipole coherence are

compared with the results in the mean field approach.

A2 Adiabatic elimination of the antenna dynamics

In the bad cavity limit, we can adiabatically eliminate the dynamics of the single
field mode (da(t)/dt — 0) since s > v and (k —7)/4 > v/ Ng. We reduce the
equations of motion to a single equation for bright collective matter coherence
By which contains the influence of the open cavity mode. Hence, Eq. (??7) in the

rotating frame of the cavity frequency wy reduces to

a*(t) ~ —iQ‘/yg(Bgd(t)) — i%Fd(t), (A2.1)
and solving for (By)
LBy = -3 (B3e) - X pe) + LB BR O, (A22)

with the renormalized decay rate of the dipole coherence ¥ = (1 + 4Ng? /),

which is commonly known as the Purcell factor (Triana et al., 2022).

Equation (A2.2) with Fy(t) = 0 is known in non-linear hydrodynamics as the
Stuart-Landau oscillator equation (Stuart, 1958; Panteley et al., 2015). The laser
pulse at a given time ¢ = t,g turns off and Eq. (A2.2) can be solved analytically by

a slow variation of the dipole coherence in polar form as (B34(t)) = [(B3d(t))]e*®.
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Thus, the equations of motion for the amplitude and phase can be written as

d Had - 5/ Had
SB 0 = ~ 1B 0) (A2.3)
Cott) = 2 HBR O (A2.0)

where their corresponding solutions are given by

(B3 (1))] = Boge™ 301 (A2.5)

B(t) = dost + QUBoff

{1 — e ttom) ] (A2.6)

with Bog = [(B3%(teg))| and ¢og = ¢(teg). The dipole coherence in the rotating

frame of the laser evolves as

(BI(1)) = (Ba(togr) e 3o =00 t0n) s expliAGo(1 — expl—(t — tos)])],
(A2.7)
where Agy = ¢gs — (o and (Bgd(tog» = Byge'®f. The exponential that depends
on the relative phase A¢ in Eq. (A2.7) evidences the nonlinear contributions,
instead of the solution with harmonic MQWs or in the weak driving regime. To
clarify, the analogous solution of the dipole coherence with U = 0 [ESC}J(t)] for

t > tog is given by

2\/N9F0 o~ (7/2+ien)t

: (A2.8)

(BSL(t)) = —B(T)
where the factor 5(7") depends on the envelope functional shape, and the stationary
phase A¢gg = 0 due to the system evolves with a constant phase ¢g = ¢og-

In the case of the phase, Eq. (A2.6) describes a stationary phase ¢(t) = ¢ in the

long time regime (¢ > t,¢), which is given by

2U B2,
Ny

¢ss = ¢oﬁ + (A29)

Note that the expression is quadratic respect to amplitude B,z and constant for
harmonic MQWs (U = 0).
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A2.1 Relation between the dipole and cavity phase shifts

We measure the free-induction decay signal in the laboratory, which is related
with the field mode coherence (a). Here, we connect the phase shift that can be
obtained from experiments with the phase from the dipole coherence. We define
the relative nonlinear phase shift in frequency domain at wq in terms of the Fourier

transform of the cavity coherence, (a(w)) = F[(a(t))](w), as

AP(wy) = ®(wo) — Prarm(wo), (A2.10)
where,
ImKd(w)ﬂ)
®(w) = arctan ( ~ (A2.11)
Re[(a(w))]
and Pyam = limp k1 (wy). The latter is valid since the response of the

anharmonic dipole oscillator under weak driving conditions Fy/k < 1 or in the
limit of negligible anharmonicity U/y — 0 is equivalent to the linear response,
as it is shown in Eq. (A2.9). Assuming the same t.g for the cavity and dipole
coherences, the equations of motion for the field coherence and phase in frequency

domain are given by

() = i (Bl 1
(a(w)) = —ign(Bo(w)) i) (A2.12)
B(wo) = B (wp) + arctan <“’°ﬁ;2°"‘3) - g (A2.13)

with

O (wy) = arctan (W) :
Re[(Bo(wo))]

The second and third term in Eq. (A2.13) are independent on anharmonicity
parameter U/k and driving strength Fy/x. Thus, in analogy with Eq. (A2.10),
i.e., considering that the relative phase shift is given in terms of the linear response
and nonlinear contributions, we can write A®(wy) as a function of the dipole
coherence instead of the field mode response as

AD(wp) = AP (wy) = DO () — D0 (wp), (A2.14)

harm

where @fl?rm(wo) = limp, k<t o) (wo)-
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A2.2 Nonlinear phase shift ansatz for an arbitrary driving

pulse

We introduce an ansatz for the relative phase since the amplitude |B,g| cannot
be defined for general driving pulses. We define the nonlinear phase shift A® at

frequency wy as

U (R

where a is a phenomenological parameter to be explored. The definition in Eq.
(A2.15) is possible considering that the squared amplitude of the dipole coherence
[Eq. (A2.5)] and the stationary phase [Eq. (A2.9)] grow proportional to the square
of the driving strength for the ratio F/x < 1. Further, numerical results in Fig.

7?7 suggest the quadratic dependence.
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